Механизм найденный на дне моря. Самый древний компьютер (4 фото). Кубок Ликурга: интересный артефакт, свидетельствующий о знании древних нанотехнологий

- 2463

Порой среди археологических находок встречаются предметы, заставляющие пересмотреть бытовавшие ранее взгляды на историю развития человечества. Выясняется, что наши далекие предки имели технологии, практически не уступающие современным. Ярким примером высокого уровня древней науки и техники является Антикитерский механизм.

Находка ныряльщика

В 1900 году греческое судно, занимавшееся промыслом морской губки в Средиземном море, попало в сильный шторм севернее острова Крит. Капитан Димитриос Кондос решил переждать непогоду возле небольшого острова Антикитера. Когда волнение улеглось, он отправил группу ныряльщиков на поиски морской губки в этом районе.

Один из них, Ликопантис, всплыв, сообщил, что увидел на морском дне какое-то затонувшее судно, а возле него огромное количество трупов лошадей, которые находились в разной степени разложения. Капитан не поверил, решил, что ныряльщику все привиделось из-за отравления углекислым газом, но все же решил самостоятельно проверить полученную информацию.

Спустившись на дно, на глубину 43 метра, Кондос увидел совершенно фантастическую картину. Перед ним лежали останки древнего судна. Возле них разбросаны бронзовые и мраморные статуи, едва проглядывавшие из-под слоя ила, густо усеянные губкой, водорослями, ракушками и прочими придонными обитателями. Именно их водолаз и принял за трупы лошадей.

Капитан предположил, что эта древнеримская галера могла перевозить нечто более ценное, чем бронзовые изваяния. Он отправил своих ныряльщиков на обследование судна. Результат превзошел все ожидания. Добыча оказалась очень богатой: золотые монеты, драгоценные камни, ювелирные украшения и множество других предметов, не представлявших интереса для команды, но за которые можно было все же что-то выручить, сдав их в музей.

Моряки собрали все что смогли, но многое еще осталось на дне. Это связано с тем, что ныряние на такую
глубину без специального снаряжения очень опасно. Во время подъема сокровищ один из 10 ныряльщиков погиб, а двое поплатились своим здоровьем. Поэтому капитан приказал свернуть работы, и судно вернулось в Грецию. Найденные артефакты были сданы в Национальный археологический музей Афин.

Находка вызвала большой интерес у греческих властей. Исследовав предметы, ученые установили, что судно затонуло в I веке до нашей эры во время рейса с Родоса в Рим. К месту катастрофы было совершено несколько экспедиций. За два года греки подняли с галеры практически все, что там было.

Под слоем известняка

17 мая 1902 года археолог Валериос Стаис, занимавшийся анализом найденных у острова Антикера артефактов, взял в руки кусок бронзы, покрытый известковыми отложениями и ракушечником. Внезапно эта глыба разломилась, поскольку бронза сильно пострадала от коррозии, и в глубине ее заблестели какие-то шестеренки.

Стаис предположил, что это фрагмент древних часов, и даже написал по такому поводу научную работу. Но коллеги из археологического общества встретили эту публикацию в штыки.

Станса даже обвинили в обмане. Критики Станса заявили, что в эпоху Античности не могли существовать такие сложные механические устройства.

Был сделан вывод, что этот предмет попал на место катастрофы из более поздних времен и не имеет к затонувшей галере никакого отношения. Стаис был вынужден отступить под напором общественного мнения, и о таинственном предмете надолго забыли.

«Реактивный самолет в гробнице Тутанхамона»

В 1951 году на Антикитерский механизм случайно наткнулся историк из Йельского университета Дерек Джон де Солла Прайс. Изучению этого артефакта он посвятил более 20 лет своей жизни. Доктор Прайс понимал, что имеет дело с беспрецедентной находкой.

Нигде в мире больше не сохранилось ни одного подобного инструмента», - говорил он. - Все, что мы знаем о науке и технологиях эпохи эллинизма, в целом противоречит существованию столь сложного технического устройства в то время. Обнаружение такого предмета можно сравнить разве что с находкой реактивного самолета в гробнице Тутанхамона.

Реконструкция механизма

Результаты своих исследований Дерек Прайс опубликовал в 1974 году в журнале Scientific American. По его мнению, данный артефакт был частью большого механизма, состоявшего из 31 большой и малой шестерни (сохранилось 20). Он служил для определения положения Солнца и Луны.

Эстафету у Прайса принял в 2002 году Майкл Райт из Лондонского музея науки. При исследовании он использовал компьютерный томограф, что позволило ему более точно получить представление о структуре устройства.

Он обнаружил, что Антикитерский механизм, кроме Луны и Солнца, определял также положение пяти планет, известных в древности: Меркурия, Венеры, Марса, Юпитера и Сатурна.

Современные исследования

Результаты новейших исследований были опубликованы в журнале Nature в 2006 году. В работе под руководством профессоров Майка Эдмундса и Тони Фрита из Кардиффского университета участвовало много выдающихся ученых. При помощи самого современного оборудования было выполнено трехмерное изображение исследуемого предмета.

С помощью новейших компьютерных технологий были открыты и прочитаны надписи, содержащие названия планет. Расшифровано почти 2000 символов. На основе исследования формы букв установлено, что Антикитерский механизм был создан во II веке до нашей эры. Информация, полученная в ходе исследований, позволила ученым реконструировать устройство.

Машина находилась в деревянном ящике с двумя дверцами. За первой дверцей был щит, который позволял наблюдать за движением Солнца и Луны на фоне знаков зодиака. Вторая дверца была на задней части устройства. А за дверцами были расположены два щита, один из которых отвечал за взаимодействие солнечного календаря с лунным, а второй прогнозировал солнечные и лунные затмения.

В дальней части механизма должны были находиться колеса (которые пропали), отвечающие за движение других планет, о чем можно узнать из надписей, выполненных на предмете.

То есть это был своеобразный древнейший аналоговый компьютер. Его пользователи могли задать любую дату, и устройство абсолютно точно показывало позиции Солнца, Луны и пяти планет, которые были известны греческим астрономам. Лунные фазы, солнечные затмения - все предсказывалось с точностью

Гений Архимеда?

Но кто, какой гений мог создать в древности это чудо техники? Вначале была выдвинута гипотеза, что творцом Антикитерского механизма был великий Архимед - человек, намного опередивший свое время и словно бы явившийся в Античность из далекого будущего (или не менее далекого и легендарного прошлого).

В римской истории есть запись о том, как он ошеломил аудиторию, продемонстрировав «небесный глобус», показывающий движение планет, Солнца и Луны, а также предсказывающий солнечные затмения с лунными фазами.

Однако механизм Антикитеры был сделан уже после смерти Архимеда. Хотя не исключено, что именно этот великий математик и инженер создал прототип, на основе которого и был сделан первый в мире аналоговый компьютер.

В настоящее время местом изготовления устройства считается остров Родос. Именно оттуда плыло судно, затонувшее у Антикитеры. Родос в те времена был центром греческой астрономии и механики. А творцом этого чуда техники считают Посидония из Апамеи, который, по словам Цицерона, был ответственным за изобретение устройства, указывающего движение Солнца, Луны и других планет. Не исключено, что греческие мореходы могли иметь несколько десятков таких механизмов, но до нас дошел только один.

И все равно остается загадкой, как древние смогли создать это чудо. Не могло у них быть таких глубоких знаний, особенно по астрономии, и таких технологий!

Вполне возможно, что в руках античных мастеров оказалось устройство, дошедшее до них из глубокой древности, из времен легендарной Атлантиды, чья цивилизация была на порядок выше современной. И уже на его основе они создали Антикитерский механизм.

Как бы то ни было, Жак-Ив Кусто, величайший исследователь глубин нашей цивилизации, назвал эту находку богатством, которое по своей ценности превосходит Мону Лизу. Именно такие восстановленные артефакты переворачивают наше сознание и полностью меняют картину мира.

Николай СОСНИН

Подробности Опубликовано 19.01.2012 12:51

В 1901 г. Элиас Стадиатос с группой других греческих ныряльщиков ловил морских губок у побережья небольшого скалистого острова Антикитера , расположенного между южной оконечностью полуострова Пелопоннес и островом Крит. При обследовании дна на глубине 43-60 метров ныряльщик обнаружил остов затонувшего римского грузового судна длиной 164 фута. На корабле находились предметы I в. до н. э.: мраморные и бронзовые статуи, монеты, золотые украшения, гончарные изделия и, как потом выяснилось, куски окислившейся бронзы, которые развалились на части сразу же после подъема со дна моря.
Находки с места кораблекрушения сразу же были изучены, описаны и пересланы в Национальный музей Афин для экспозиции и хранения. 17 мая 1902 г. греческий археолог Спиридон Стаис, изучая необычные, покрытые морскими наростами обломки с затонувших кораблей, пролежавшие в море до 2000 лет, заметил в одном куске зубчатое колесико с надписью, похожей на греческое письмо. Рядом с необычным предметом был обнаружен деревянный ящик, однако он, так же как и деревянные доски с самого корабля, вскоре высох и раскрошился. Дальнейшие исследования и тщательная очистка окислившейся бронзы позволили выявить еще несколько обломков таинственного предмета. Вскоре был найден искусно сделанный шестереночный механизм из бронзы, размером 33x17x9 см. Стаис считал, что механизм представлял собой древние астрономические часы, однако, согласно общепринятым предположениям того времени, этот предмет был слишком сложным механизмом для начала I в. до н. э. - так датировали затонувший корабль по найденным на нем гончарным изделиям. Многие исследователи полагали, что механизм представлял собой средневековую астролябию - астрономический прибор для наблюдения за движением планет, используемый в навигации (древнейшим из известных образцов была иракская астролябия IX в.). Однако к общему мнению относительно датировки и целей создания артефакта тогда прийти не удалось, и вскоре о загадочном предмете забыли.

В 1951 г. британский физик Дерек Де Солла Прайс, тогда профессор истории науки в Иельском университете, заинтересовался хитроумным механизмом с затонувшего корабля и занялся его детальным изучением. В июне 1959 г., после восьми лет тщательного изучения рентгеновских снимков предмета, результаты анализа были изложены в статье под названием "Древнегреческий компьютер" и опубликованы в "Сайентифик американ". При помощи рентгена удалось рассмотреть по крайней мере 20 отдельных шестеренок, в том числе полуосевую, которую ранее считали изобретением XVI в. Полуосевая шестеренка позволяла двум стержням вращаться с различной скоростью, подобно задней оси автомобилей. Подводя итоги своего исследования, Прайс пришел к выводу, что антикитерская находка представляет собой обломки величайших астрономических часов, прототипов современных аналоговых компьютеров. Его статью встретили в ученом мире неодобрительно. Некоторые профессора отказывались верить в возможность существования такого прибора и предполагали, что предмет, должно быть, попал в море в Средние века и случайно оказался среди обломков потерпевшего крушения корабля.

Основной фрагмент Антикерского механизма.

Фрагмент Антикерского механизма.

Г. Прайс опубликовал результаты более полных исследований в монографии под названием "Греческие приборы: Антикитерский механизм - календарный компьютер 80 г. до н. э.". В своем труде он анализировал сделанные греческим радиографом Христосом Каракалосом рентгеновские снимки и полученные им данные гамма-радиографии. Дальнейшие изыскания Прайса показали, что древний научный прибор на самом деле состоит из более чем 30 шестеренок, однако их большая часть представлена не полностью. Тем не менее даже сохранившиеся обломки позволили Прайсу заключить, что при вращении рукоятки механизм должен был показывать движение Луны, Солнца, возможно, планет, а также восхождение основных звезд. По выполняемым функциям устройство напоминало сложный астрономический компьютер. Это была действующая модель Солнечной системы, когда-то находившаяся в деревянном ящике с дверями на шарнирах, которые защищали внутреннюю часть механизма. Надписи и расположение шестеренок (а также годичный круг объекта) привели Прайса к выводу, что механизм связан с именем Геминуса Родосского - греческого астронома и математика, жившего около 110-40 гг. до н. э. Прайс решил, что антикитерский механизм был спроектирован на греческом острове Родос, что у побережья Турции, возможно даже самим Геминусом, примерно в 87 г. до н. э. Среди остатков груза, с которым плыл потерпевший крушение корабль, действительно были найдены кувшины с острова Родос. По-видимому, их везли с Родоса в Рим. Дату, когда судно ушло под воду, с определенной долей уверенности можно отнести к 80 г. до н. э. Предмету на момент крушения было уже несколько лет, поэтому сегодня датой создания антикитерского механизма принято считать 87 г. до н. э.
В таком случае, вполне возможно, что устройство было создано Геминусом на острове Родос. Этот вывод кажется правдоподобным еще и потому, что Родос в те времена был известен как центр астрономических и технологических исследований. Во II в. до н. э. греческий писатель и механик Филон Византийский описывал полиболы, которые видел на Родосе. Эти потрясающие катапульты могли стрелять без перезагрузки: на них две шестеренки соединялись цепью, которая приводилась в движение с помощью ворота (механического устройства, состоявшего из горизонтального цилиндра с ручкой, благодаря которой он мог вращаться). Именно на Родосе греческий философ-стоик, астроном и географ Посидоний (135-51 гг. до н. э.) сумел раскрыть природу приливов и отливов. Кроме того, Посидоний довольно точно (для того времени) высчитал размеры Солнца, а также величину Луны и расстояние до нее. Имя астронома Гиппарха Родосского (190-125 гг. до н. э.) связывают с открытием тригонометрии и созданием первого звездного каталога. Более того, он был одним из первых европейцев, который, используя данные вавилонской астрономии и собственные наблюдения,исследовал Солнечную систему. Возможно, часть полученных Гиппархом данных и его идеи были использованы при создании антикитерского механизма.
Антикитерское устройство является древнейшим дошедшим до наших дней образцом сложных механических технологий. Применение зубчатых колесиков более 2000 лет назад вызывает величайшее изумление, а мастерство, с которым они были выполнены, сравнимо с искусством изготовления часов в XVIII в. В последние годы было создано несколько рабочих копий древнего компьютера. Одну из них изготовили австрийский специалист по компьютерам Аллан Джордж Бромли (1947-2002) из Сиднейского университета и часовщик Фрэнк Персивал. Бромли также сделал наиболее четкие рентгеновские снимки предмета, которые послужили основой для создания трехмерной модели механизма его студентом Бернардом Гарнером. Несколько лет спустя британский изобретатель, автор оррэри (настольного демонстрационного механического планетария - модели Солнечной системы) Джон Глив сконструировал более точный образец: на передней панели рабочей модели располагался циферблат, отображавший движение Солнца и Луны по зодиакальным созвездиям египетского календаря.

Еще одну попытку исследовать и воссоздать артефакт в 2002 г. предпринял хранитель отдела механической инженерии музея науки Майкл Райт совместно с Алланом Бромли. Хотя некоторые результаты исследования Райта имеют расхождения с трудом Дерека Де Солла Прайса, он пришел к выводу, что механизм - еще более удивительное изобретение, чем предполагал Прайс. Обосновывая свою теорию, Райт опирался на рентгеновские снимки предмета и использовал метод так называемой линейной томографии. Эта технология позволяет увидеть предмет в деталях, рассматривая лишь одну его плоскость или край, четко фокусируя изображение. Таким образом Райту удалось тщательно изучить шестерни и установить, что прибор мог точно имитировать не только движение Солнца и Луны, но также всех планет, известных древним грекам: Меркурия, Венеры, Марса, Юпитера и Сатурна. Видимо, благодаря расставленным по кругу на лицевой панели артефакта бронзовым меткам, которыми обозначались зодиакальные созвездия, механизм мог (и довольно точно) рассчитать положение известных планет применительно к любой дате. В сентябре 2002 г. Райт завершил модель, и она стала частью экспозиции "Древние технологии" технопарка музея Афин.
Многие годы исследований, попыток реконструировать и разнообразнейших предположений так и не дали точного ответа на вопрос: как работал антикитерский механизм. Существовали теории о том, что он выполнял астрологические функции и использовался для компьютеризации гороскопов, создавался как учебная модель Солнечной системы или даже как сложная игрушка для богачей. Дерек Де Солла Прайс считал механизм свидетельством сложившихся традиций высоких технологий обработки металлов у древних греков. По его мнению, когда Древняя Греция пришла в упадок, эти знания не были утрачены - они стали достоянием арабского мира, где позднее появились подобные механизмы, а в дальнейшем создали фундамент для развития технологии изготовления часов в средневековой Европе. Прайс полагал, что поначалу устройство находилось в статуе, на специальном табло. Возможно, когда-то механизм располагался в сооружении, похожем на потрясающую восьмиугольную мраморную башню ветров с водяными часами, расположенную на Римской агоре в Афинах.
Исследования и попытки воссоздания антикитерского механизма заставили ученых с другой точки зрения взглянуть на описание устройств подобного типа в древних текстах. Ранее считалось, что упоминания о механических астрономических моделях в работах античных авторов не следует понимать буквально. Предполагалось, что греки владели общей теорией, а не конкретными знаниями в области механики. Однако после открытия и изучения антикитерского механизма это мнение должно измениться. Римский оратор и писатель Цицерон , живший и творивший в I в. до н. э., то есть в период, когда произошло кораблекрушение у Андикитиры, рассказывает об изобретении его друга и учителя, упоминаемого ранее Посидония. Цицерон говорит о том, что Посидоний на днях создал устройство, <которое при каждом обороте воспроизводит движение Солнца, Луны и пяти планет, занимающих каждые день и ночь в небе определенное место>. Цицерон также упоминает о том, что астроном, инженер и математик Архимед из Сиракуз (287-212 гг. до н. э.), <по слухам, создал небольшую модель Солнечной системы>. С устройством может быть связано и замечание оратора о том, что римский консул Марцелий очень гордился тем, что у него есть модель Солнечной системы, спроектированная самим Архимедом. Он взял ее в качестве трофея в Сиракузах, расположенных на восточном побережье Сицилии. Именно во время осады города, в 212 г. до н. э., Архимед был убит римским солдатом. Некоторые исследователи полагают, что астрономический прибор, поднятый с места кораблекрушения у Андикитиры, был спроектирован и создан Архимедом. Впрочем, несомненно лишь то, что один из самых потрясающих артефактов древнего мира, настоящий антикитерский механизм, сегодня находится в коллекции Национального археологического музея в Афинах и вместе с реконструированным образцом является частью его экспозиции. Копия древнего устройства выставлена также в Американском компьютерном музее г. Бозман (Монтана). Открытие антикитерского механизма однозначно поставило под сомнение общепринятое представление о научных и технических достижениях древнего мира.

Воссозданный Антикитерский механизм.

Реконструированные модели устройства доказали, что оно выполняло функции астрономического компьютера, а греческие и римские ученые I в. до н. э. довольно искусно проектировали и создавали сложные механизмы, которым на протяжении тысячи лет не было равных. Дерек Де Солла Прайс заметил, что цивилизации, владеющие технологиями и знаниями, необходимыми для создания таких механизмов, могли построить практически все, что им бы хотелось. К сожалению, большая часть созданного ими не сохранилась. То, что антикитерский механизм так мало упоминается в древних текстах, дошедших до нашего времени, доказывает, как много утрачено из того важного и удивительного периода европейской истории. И если бы не ловцы морских губок 100 лет назад, у нас бы не было и этого доказательства существования научных достижений в Греции 2000 лет назад.

Антикитерский механизм

Этот загадочный артефакт по праву ходит в ТОП-5 утерянных технологий древности и в десятку загадочных древних артефактов. Антикитерский механизм (греч. Μηχανισμς των Αντικυθρων) — механическое устройство, обнаруженное в 1902 году на затонувшем древнем судне недалеко от греческого острова Антикитера (греч. Αντικθηρα). Датируется приблизительно 100 годом до н. э. (возможно, до 150 года до н. э.).

Удивительную находку - несколько странных на вид деталей - наряду с многочисленными амфорами и статуями поместили в Национальный археологический музей в Афинах. Не исключено, что обломки прибора, обросшие известняком, поначалу могли принять за кусок статуи. Так или иначе, про уникальный артефакт забыли ровно на полвека.

В 1951 году исследованием артефакта занялся английский историк науки Дерек де Солла Прайс . Именно он впервые высказал предположение, что обнаруженные на дне Эгейского моря обломки - это части некоего механического вычислительного устройства. Он же провел первое рентгеновское исследование фрагментов механизма и даже смог построить его схему. Статья Прайса в журнале Scientific American, опубликованная в 1959 году, вызвала интерес к древнему артефакту. Возможно из-за того, что Прайс впервые осмелился назвать механизм "древним компьютером".

Механизм содержал большое число бронзовых шестерён в деревянном корпусе, на котором были размещены циферблаты со стрелками и, по реконструкции, использовался для расчёта движения небесных тел. Другие устройства подобной сложности неизвестны в эллинистической культуре. В нём используется дифференциальная передача, которая, как ранее считалось, изобретена не раньше XVI века. С помощью дифференциальной передачи вычислялась разность положений Солнца и Луны, которая соответствует фазам Луны. Уровень миниатюризации и сложность сопоставимы с механическими часами XVIII века. Ориентировочные размеры механизма в сборе 33x18x10 мм.

Загадкой остается то, как греки на тот момент не обладая необходимыми знаниями и, что самое важное, технологиями, смогли создать столь сложный прибор. Например, для изготовления шестеренок вначале необходимо было овладеть техникой обработки металла и использовать пусть и простейший, но все же токарный станок.

В 1971 году была составлена полная схема Антикитерского механизма, состоявшая из 32 шестеренок.

Впрочем, несмотря на все попытки исследования, прибор оставался загадкой для человечества еще долгие годы. Пока за его исследования не взялись современные ученые.

В 2005 году стартовал греческо-британский проект «Antikythera Mechanism Research Project» по изучению антикитерского механизма.

Для того, чтобы восстановить положение шестерён внутри покрытых минералом фрагментов, воспользовались компьютерной томографией, с помощью рентгеновских лучей позволяющей делать объёмные карты скрытого содержимого. За счёт этого удалось определить взаимосвязь отдельных компонентов и рассчитать по возможности их функциональную принадлежность.

30 июля 2008 года в Афинах был озвучен окончательный доклад о результатах исследования. Итак, ученые выяснили следующее:

  1. Устройство могло выполнять операции сложения, вычитания и деления. Из этого следует, что перед нами - нечто вроде древнего калькулятора.
  2. Антикитерский механизм способен учитывать эллиптическую орбиту движения Луны, используя синусоидальную поправку (первая аномалия лунной теории Гиппарха) - для этого использовалась шестерёнка со смещённым центром вращения.
  3. Обратная сторона механизма, сильно поврежденная, использовалась для предсказания солнечных и лунных затмений.
  4. Текст на приборе представляет собой обыкновенную инструкцию по эксплуатации.

Число бронзовых шестерён в реконструированной модели увеличено до 37 (реально уцелело 30).

Но было у устройства еще одно назначение, о котором исследователи узнали только в 2006 году. Детальное изучение результатов компьютерной томограммы объекта показало, что на корпусе Антикитерского механизма есть отметки, по которым можно вычислять еще один временной параметр - периоды проведения Олимпийских игр.

В 2010 году инженер Apple Andrew Carol с помощью конструктора Lego создал аналог антикитерского механизма. Даная модель, состоящая из элементов конструктора LEGOTechnics. Для сборки механизма понадобилось 1500 кубиков и 110 шестерен, а на его разработку и построение ушло 30 дней

Известная швейцарская часовая компания Hublot в этом году выпустила наручный вариант антикитерского механизма. Этот грандиозный девайс является прелестной репликой с оригинального древнего устройства. Механизм Antikythera Calibre 2033-CH01 от Hublot с ручным заводом, имеет длину 38,00 мм, ширину 30,40 мм, толщину 14,14 мм, состоит из 495 деталей, на 69 камнях, с балансовой частотой 21600 полуколебаний в час (3 гц), запасом хода 120 часов (5 дней), функциями индикации часов, минут, секунд (на парящем турбийоне), фаз Луны. Кроме того, им отображаются знаки Зодиака, показатели египетского календаря, четырехлетнего древнегреческого календаря (цикл Олимпийских игр), цикла Callipic (4 х 235 месяцев), цикла Saros (223-месячный) и цикл Exeligmos (3 х 223 месяца).

При подготовке статьи использовались материалы:
Википедии - свободной энциклопедии
и сайта

В 1900 году накануне Пасхи два судна ловцов губок, возвращавшихся от берегов Африки, бросили якорь у маленького греческого острова Антикитера (Антикифера) в Эгейском море, расположенного между островом Крит и южной оконечностью материковой Греции — полуостровом Пелопоннес. Там, на глубине примерно 60 метров, ныряльщики обнаружили останки древнего корабля.


Ныряльщики за губками, 1900 год

На следующий год греческие археологи с помощью водолазов начали исследование затонувшего судна, которое оказалось римским торговым кораблем, потерпевшим крушение около 80-50 гг. до нашей эры. По наиболее вероятной гипотезе, судно шло с острова Родос, скорее всего, в Рим с трофеями либо дипломатическими «дарами». Как известно, завоевание Греции Римом сопровождалось систематическим вывозом культурных ценностей в Италию.

Среди предметов, поднятых с затонувшего корабля, оказался бесформенный ком корродированной бронзы, принятый сначала за обломок статуи. В 1902 году его изучением занялся археолог Валериос Стаис. Расчистив его от известковых отложений, он, к своему удивлению, обнаружил сложный механизм, наподобие часового, с множеством бронзовых шестеренок, остатками приводных валов и измерительных шкал. Также удалось разобрать некоторые надписи на древнегреческом языке.

Пролежав 2 000 лет на морском дне, механизм дошел до нас в сильно поврежденном виде. Деревянный каркас, на котором он, по всей видимости, крепился, полностью распался. Металлические детали сильно деформировались и подверглись коррозии. Кроме того, многие фрагменты механизма были утрачены. В 1903 году в Афинах вышла первая официальная научная публикация с описанием и фотографиями Антикитерского механизма, как было названо это устройство.

Потребовалась кропотливая работа по расчистке прибора, которая продолжалась не одно десятилетие. Его реконструкция казалась делом почти безнадежным, и он долгое время оставался малоизученным, пока не привлек внимание английского физика и историка науки Дерека де Солла Прайса (Derek J. de Solla Price). В 1959 году в журнале «Scientific American» была опубликована статья Прайса «Древнегреческий компьютер», посвященная Антикитерскому механизму и ставшая важной вехой в его исследовании.

Проведенный в 1971 году радиоуглеродный анализ и эпиграфические исследования надписей дали возможность установить, что этот прибор был создан в 150-100 году до нашей эры. Исследование механизма с помощью рентгеновской и гамма-радиографии дало ценную информацию о внутренней конфигурации устройства.

Все сохранившиеся металлические части Антикитерского механизма изготовлены из листовой бронзы толщиной 1-2 миллиметра. Многие фрагменты практически полностью преобразовались в продукты коррозии, однако во многих местах все еще можно различить изящные детали механизма. В настоящее время известно 7 больших и 75 малых фрагментов данного механизма.

Еще на начальном этапе исследования, благодаря сохранившимся надписям и шкалам, Антикитерский механизм был определен как некое устройство для астрономических нужд. Согласно первой гипотезе, это был какой-то инструмент навигации, возможно, астролябия — своего рода круговая карта звездного неба с приспособлениями для определения координат звезд и иных астрономических наблюдений, изобретателем которой считается древнегреческий астроном Гиппарх (ок. 180-190 - 125 до н.э.).

Однако вскоре стало ясно, что по уровню миниатюризации и сложности Антикитерский механизм сопоставим с астрономическими часами XVIII века. Он содержит более 30 шестеренок с зубьями в форме равносторонних треугольников. Столь высокая сложность и безупречное изготовление позволяют предположить, что у него имелся ряд предшественников, которые не были обнаружены.

Согласно второй гипотезе, механизм представлял собой «плоский» вариант механического небесного глобуса (планетария), созданного Архимедом (ок. 287 - 212 до н.э.), о котором сообщают древние авторы.

Самое раннее упоминание о глобусе Архимеда относится к I веку до нашей эры. В диалоге знаменитого римского оратора Цицерона «О государстве» разговор между участниками беседы заходит о солнечных затмениях, и один из них рассказывает:

Я вспоминаю, как я однажды вместе с Гаем Сульпицием Галлом, одним из самых ученых людей нашего отечества, был в гостях у Марка Марцелла… и Галл попросил его принести знаменитую «сферу», единственный трофей, которым прадед Марцелла пожелал украсить свой дом после взятия Сиракуз, города, полного сокровищ и чудес.

Я часто слышал, как рассказывали об этой «сфере», которую считали шедевром Архимеда, и должен признаться, что на первый взгляд я не нашел в ней ничего особенного. Более красива и более известна в народе была другая сфера, созданная тем же Архимедом, которую тот же Марцелл отдал в храм Доблести.

Но когда Галл начал с большим знанием дела объяснять нам устройство этого прибора, я пришел к заключению, что сицилиец обладал дарованием большим, чем то, каким может обладать человек. Ибо Галл сказал, что… сплошная сфера без пустот была изобретена давно… но, - сказал Галл, - такая сфера, на которой были бы представлены движения Солнца, Луны и пяти звезд, называемых… блуждающими, не могла быть создана в виде сплошного тела.

Изобретение Архимеда изумительно именно тем, что он придумал, каким образом при несходных движениях во время одного оборота сохранить неодинаковые и различные пути. Когда Галл приводил эту сферу в движение, происходило так, что на этом шаре из бронзы луна сменяла солнце в течение стольких же оборотов, во сколько дней она сменяла его на самом небе, вследствие чего и на небе сферы происходило такое же затмение солнца, и луна вступала в ту же мету, где была тень земли, когда солнце из области… (Лакуна).

О внутреннем механизме небесного глобуса Архимеда достоверно ничего не известно. Можно предположить, что он состоял из сложной системы зубчатых передач, как и Антикитерский механизм. Архимед написал книгу об устройстве небесного глобуса — «Об изготовлении сфер», но, к сожалению, она была утрачена.

Цицерон пишет также о другом подобном устройстве, изготовленном Посидонием (ок. 135 - 51 до н.э.), философом-стоиком и ученым, жившим на острове Родос, откуда, возможно, отплыл корабль, перевозивший Антикитерский механизм: «Если бы кто-нибудь привез в Скифию или Британию тот шар (sphaera), что недавно изготовил наш друг Посидоний, шар, отдельные обороты которого воспроизводят то, что происходит на небе с Солнцем, Луной и пятью планетами в разные дни и ночи, то кто в этих варварских странах усомнился, бы, что этот шар - произведение совершенного рассудка?». (Цицерон. О природе богов, II, 34)

Дальнейшие исследования показали, что Антикитерский механизм являлся астрономическим и календарным калькулятором, использовавшимся для прогнозирования позиций небесных светил в небе, и мог служить также как планетарий для демонстрации их движения. Таким образом, речь идет о более сложном и многофункциональном устройстве, чем небесный глобус Архимеда.

По одной из гипотез, данное устройство было создано в Академии, основанной философом-стоиком Посидонием на греческом острове Родос, который в то время был известен как центр астрономии и «машиностроения». Предполагается также, что инженером, разработавшим устройство, мог быть астроном Гиппарх (ок. 190-120 до н.э.), также живший на острове Родос, поскольку оно содержит механизм, который использует его теорию движения Луны.

Однако последние выводы участников Проекта по исследованию Антикитерского механизма, опубликованные 30 июля 2008 года в журнале «Nature», позволяют предположить, что концепция механизма возникла в колониях Коринфа, что может указывать на традицию, идущую от Архимеда.

Несмотря на плохую сохранность и фрагментарность частей Антикитерского механизма, благодаря кропотливой работе исследователей, есть возможность с достаточной уверенностью представить в общих чертах его устройство и функции.

После установки даты прибор, предположительно, приводили в действие вращением ручки, расположенной на боковой грани корпуса. Большое ведущее колесо с 4 спицами было связано при помощи многоступенчатых зубчатых передач с многочисленными шестеренками, вращавшимися с различной скоростью и перемещавшими указатели на циферблатах.

Механизм имел три основных циферблата с концентрическими шкалами: один — на передней панели и два — на задней панели. На передней панели было две шкалы: неподвижная внешняя, представляющая эклиптику (большой круг небесной сферы, по которому происходит видимое годичное движение Солнца), — была разделена на 360 градусов и 12 отрезков по 30 градусов со знаками Зодиака, и подвижная внутренняя, имевшая 365 делений по числу дней в египетском календаре, который использовался греческими астрономами. Погрешность календаря, вызванная большей реальной продолжительностью солнечного года (365,2422 дней), могла корректироваться поворотом календарного циферблата на 1 деление назад за каждые 4 года.

Передний циферблат имел, вероятно, три стрелочных индикатора: один — с указанием даты, а два других — с указанием положений Солнца и Луны относительно плоскости эклиптики. Указатель положения Луны позволял учитывать неравномерность ее движения, вызванную тем, что спутник Земли движется не по круговой, а по эллиптической орбите. Для этого использовалась хитроумная система зубчатых передач, включавшая две шестеренки со смещенным относительно оси вращения центром тяжести.

На передней панели располагался также механизм с индикатором фаз Луны. Сферическая модель Луны, наполовину посеребренная, наполовину черная, показывалась в круглом окошке, демонстрируя текущую фазу Луны.

Существует точка зрения, что механизм мог иметь указатели для всех пяти планет, известных грекам (это Меркурий, Венера, Марс, Юпитер и Сатурн). Но ни одна передача, отвечающая за такие планетарные механизмы, не найдена. В то же время недавно обнаруженные надписи, в которых упоминаются стационарные точки планет, позволяют предположить, что Антикитерский механизм мог также описывать их движение.

Наконец, на тонкой бронзовой пластине, прикрывающей передний циферблат, находилась парапегма - астрономический календарь с указанием восходов и заходов отдельных звезд и созвездий, обозначенных греческими буквами, корреспондирующими с теми же литерами на зодиакальной шкале.

Таким образом, прибор мог показывать взаимное расположение светил на небесной сфере на конкретную дату, что могло иметь практическое применение в работе астрономов и астрологов, избавляя от сложных и трудоемких расчетов.

На задней панели располагались два больших циферблата. Верхний циферблат, имевший форму спирали с пятью витками и 47 отделениями в каждом витке, отображал Метонов цикл, названный в честь афинского астронома и математика Метона, предложившего его в 433 году до нашей эры. Он употреблялся для согласования продолжительности лунного месяца и солнечного года в лунно-солнечном календаре.

Как отметил древнегреческий ученый I века до нашей эры Гемин в своих «Элементах астрономии», греки приносили жертвы богам по обычаям предков и поэтому «они должны сохранять в годах согласие с Солнцем, а в днях и месяцах - с Луной».

На верхнем циферблате задней панели располагался также вспомогательный циферблат, разбитый на четыре сектора, напоминающий секундный циферблат современных наручных часов.

В 2008 году руководитель Проекта по исследованию Антикитерского механизма Тони Фриз и его коллеги обнаружили на этом циферблате названия 4 панэллинских игр — Истмийских, Олимпийских, Немейских и Пифийских, а также игр в Додоне. Олимпийский циферблат должен был быть включен в существующую зубчатую передачу, перемещавшую указатель на 1/4 оборота за год.

Это подтверждает, что Антикитерский механизм мог использоваться для расчетов дат религиозных праздников, связанных с астрономическими событиями (в том числе Олимпийских и других священных игр), а также служить для коррекции календарей на основе Метонова цикла.

В нижней части задней панели находился циферблат в виде спирали с 223 отделениями, показывающий цикл Сарос. Сарос, открытый, возможно, вавилонскими астрономами - период, по истечении которого, вследствие повторения взаимного расположения Солнца, Луны и узлов лунной орбиты на небесной сфере, в одной и той же последовательности вновь повторяются солнечные и лунные затмения. Сарос включает в себя 223 синодических месяца, что составляет примерно 18 лет 11 дней 8 часов.

На шкале циферблата, показывающего цикл Сарос, имеются символы Σ для лунных затмений (ΣΕΛΗΝΗ, Луна), символы Η — для солнечных затмений (ΗΛΙΟΣ, Солнце) и цифровые обозначения, выполненные греческими буквами, предположительно указывавшие на дату и час затмений. Удалось установить корреляции с реально наблюдавшимися затмениями.

Меньший вспомогательный циферблат отображает «тройной Сарос», или «цикл Экселигмос» (греч. ἐξέλιγμος), дающий период повторения затмений в целых днях. Поле этого циферблата разбито на три сектора: один чистый и два с обозначениями часов (8 и 16), которые нужно прибавить для каждого второго и третьего Сароса в цикле, чтобы получить время затмений. Это подтверждает, что прибор мог использоваться для прогнозирования лунных и, возможно, солнечных затмений.


Компьютерная реконструкция механизма

Антикитерский механизм был заключен в деревянный ящик, на дверцах которого находились бронзовые таблички, содержащие руководство по его применению с астрономическими, механическими и географическими данными. Интересно, что среди географических названий в тексте встречается ΙΣΠΑΝΙΑ (Испания по-гречески), что является старейшим упоминанием страны в этой форме, в отличие от Иберии.

Благодаря усилиям исследователей Антикитерский механизм постепенно открывает свои тайны, расширяя наши представления о возможностях античной науки и техники. В 1974 году в статье «Греческие шестеренки - календарный компьютер до нашей эры» Прайс представил теоретическую модель Антикитерского механизма, основываясь на которой, австралийский ученый Аллан Джордж Бромли из Университета Сиднея и часовщик Фрэнк Персивал изготовили первую действующую модель. Несколько лет спустя британский изобретатель Джон Глив, занимающийся изготовлением планетариев, сконструировал более точный образец, работающий по схеме Прайса.

Большой вклад в изучение Антикитерского механизма внес Майкл Райт (Michael Wright), сотрудник Лондонского музея науки и Имперского колледжа в Лондоне, который в 2002 году смог воссоздать полную реконструкцию устройства, а в 2007 году представил его модифицированную модель. Оказалось, что Антикерский механизм позволяет моделировать не только перемещения Солнца и Луны, но и Меркурия, Венеры, Марса, Юпитера и Сатурна.

В 2016 году ученые представили результаты своих многолетних исследований. На сохранившихся 82 фрагментах устройства удалось расшифровать 2 000 букв, в том числе 500 слов. Все же описание, по мнению ученых, могло занимать 20 000 символов. В них рассказывалось о назначении устройства, в частности, об определении дат 42 астрономических явлений. Кроме того, в нем были заложены функции предсказания, в частности, определялся цвет и размер солнечного затмения, а из него и сила ветров на море (греки унаследовали это верование от вавилонян).

«Это устройство просто экстраординарное, оно единственное в своём роде, - считает Майк Эдмундс (Mike Edmunds), профессор из университета Кардиффа (Cardiff University), возглавляющий исследование механизма. – Его дизайн превосходен, и астрономия совершенно точна… С точки зрения исторической ценности этот механизм я считаю дороже Моны Лизы».

Использованы материалы сайта:

Со времен возникновения цивилизации вплоть до начала индустриальной революции, люди для подъема предметов использовали силу своих мышц. Со временем организационные навыки и хитроумные механические изобретения позволили поднимать все более весомые грузы. Однако только с началом индустриальной революции произошел коренной перелом в области грузоподъемных механизмов, что позволило человечеству поднимать предметы, о которых они даже не мечтали ранее, затрачивая при этом минимум усилий.

На сегодняшний день наиболее распространенная грузоподъемность башенного крана, используемого в строительстве, составляет от 12 до 20 тонн. Для большинства строительных проектов древней истории, такой грузоподъемности будет совершенно недостаточно.

Египетские пирамиды, построенные в период от 2750 до 1500 г. до н.э. в большинстве своем состоят из камней весом 2-3 тонны, однако все эти конструкции держатся на каменных блоках весом более 50 тонн. Храм Амона-Ра в Карнаке имеет лабиринт из 134 колонн высотой 23 метра, которые в свою очередь являются опорами поперечных балок весом от 60 до 70 тонн каждая. 18 капитальных блоков колонны Траяна в Риме весят более 53 тонн, и они были подняты на высоту 34 метров. Храм римский Юпитер (Вакха) в Баальбеке содержит каменные блоки весом более 100 тонн, поднятые на высоту 19 метров. Сегодня, чтобы поднять груз весом от 50 до 100 тонн до этих высот понадобится предельно мощный кран.

Иногда, нашим предкам приходилось поднимать еще более тяжелые грузы. Купол мавзолея Теодориха Великого в Равенне (около 520 н. э.) — это 275-тонный каменный блок, который был поднят на высоту 10 метров. Храм в честь фараона Хефрена в Египте состоит из монолитных блоков весом до 425 тонн. Самый большой египетский обелиск весил более 500 тонн и имел высоту более 30 метров, в то время как крупнейший обелиск в Царстве Аксум в Эфиопии (4 век н. э.), поднятый на высоту 24 метра, весил 520 тонн. Колоссы Мемнона – две 700-тонные статуи были возведены на высоту 18 метров, а стены храма Юпитера в Баальбеке (1-й век до н. э.) содержат почти 30 монолитов весом от 300 до 750 тонн каждый. Только самые мощные современные краны могли бы поднимать камни этого веса.

Подъем строительных материалов до впечатляющих высот также не составлял особых проблем. Так, высота Александрийского маяка (3 век до н.э.) составила более 76 метров. Египетские пирамиды поднимаются до 147 метров. В средневековье около 80 крупных соборов и около 500 крупных церквей были построены с высотой до 160 метров. В настоящее время подъем груза на данные высоты недосягаем для большинства современных кранов, кроме самых последних топ-моделей гусеничных кранов.

Сила человеческого подъема

Учитывая тип кранов, которые потребовались бы сегодня для решения задач, описанных выше, удивляешься, как наши предки были способны поднять такие внушительные грузы без помощи сложных машин. Дело в том, что в их распоряжении были механизмы, принцип действия которых был схож с сегодняшними. Единственное отличие от современных кранов является то, что эти машины были приведены в действие с помощью людской силы вместо топлива или электрической энергии.

В принципе, нет никаких ограничений на вес, который люди могут поднять с помощью чистой мышечной силы. Также не существует ограничения на высоту, к которой этот груз можно поднять. Единственное преимущество современных подъемных механизмов – это высокая скорость подъема, и как следствие экономия времени. Конечно, это вовсе не означает, что один человек может поднять что угодно на любую высоту, или что мы можем поднять что-либо на любую высоту, просто используя достаточное количество людей вместе. Но начиная с 3 века до нашей эры, инженеры разработали ряд машин, которые значительно повысило подъемную силу человека или группы людей. Подъемные устройства использовались в основном для строительных нужд, но позже также применялись для погрузки и разгрузки товаров, для подъема паруса на судах, и для целей горной промышленности.

Первоначально скорость подъема машин была крайне низкой, в то время как количество живой силы, необходимой для работы, оставалось очень высоким. Однако к концу девятнадцатого века, непосредственно перед началом массовой эксплуатацией паросиловых машин, грузоподъемные механизмы стали столь тщательно продуманными, что один человек мог поднять 15-тонный груз в мгновение ока, используя только одну руку.

Пандусы и рычаги

Некоторые думают, что в распоряжении строителей Древнего Египта имелись сложные подъемно-транспортные машины, однако большинство историков заявляют, что египтяне использовали только самые простые подъемные устройства: наклонные плоскости (пандусы) и рычаги (принцип качелей). Скаты (пандусы) использовались для подъема обелисков.

При перемещении объекта вверх по пандусу, а не при помощи полностью вертикального подъема, величина требуемой силы уменьшается за счет увеличения расстояния, который груз должен преодолеть. Механическое преимущество наклонной плоскости (пандуса) равна длине плоскости, деленной на высоту склона.
Механическое преимущество рычага – это расстояние между точкой опоры и точкой, где применяется сила, деленная на расстояние между точкой опоры и весом, который будет поднят.

В тоже время метод египтян не дал значительного механического преимущества над простым вертикальным подъемом груза с помощью веревок, так как потребность в рабочей силе была крайне высока не только для буксировки и перевертывания камней (около 50 мужчин для буксировки блока весом 2,5 тонны), но и для строительства и демонтажа глиняных пандусов.

Историки подсчитали, что трудовые ресурсы, необходимые чтобы построить пирамиды составляли от 20000 до 50000 мужчин, а срок строительства большинства пирамид растягивался на десятилетия. В наши дни такие сооружения могут быть построены за несколько лет с помощью кранов и небольшого штата сотрудников.

Рождение крана. Шкив

Первые краны появились в Греции в конце 6 начале 5-го века до нашей эры. Римляне, стремясь строить большие сооружения, переняли технологию и развили ее дальше. Самые ранние краны состояли из троса, пропущенного через шкив. Прежде чем этот метод подъема нашел свое применение в строительстве, с 8-9-го века до нашей эры он использовался для черпания воды из скважин. Применение одного шкива не дает механического преимущества само по себе, но он меняет направление тяги: легче тянуть вниз, а не тащить вверх. Подталкивание вертикально вверх одной рукой производит приблизительно 150 ньютонов, в то время как подталкивание вертикально вниз одной рукой производит приблизительно 250 ньютонов.

Приблизительно в 4 веке до нашей эры механическое преимущество кранов было увеличено с помощью внедрения дополнительных изменений в данный метод подъема, а именно соединение нескольких шкивов в блоки. Механическое преимущество в таком случае равняется сумме используемых шкивов.

У подъемного крана с тройным шкивом есть два шкива, прикрепленных к подъемному крану и свободный шкив, отстраненный от него. Это предлагает механическое преимущество от 3 до 1. Подъемный кран с пятью шкивами в аналогичном механизме предлагает механическое преимущество от 5 до 1.

Используя составной шкив человек может поднять больше, чем не используя. Если единственный человек, тянущий веревку, может поднять груз в 50 кг, то он же может поднять (или опустить) 150 кг, используя подъемный механизм с тройным шкивом и 250 кг, используя блок с пятью шкивами. То же самое относится и к тросу. Трос с пределом прочности 50 килограммов может применяться для подъема (или спуска) 150 килограммов, используя подъемный механизм с тройным шкивом и 250 кг, используя блок с пятью шкивами.

Недостатком подъемного механизма с блоком шкивов является, опять-таки, расстояние и, следовательно, скорость подъема. Подъем груза на высоту 3 метра с помощью крана с тройным шкивом потребует трос длиной 9 метров, а подъем груза на высоту 3 метра с помощью крана с пятью шкивами уж потребует трос на 15 метров.

Теоретически, может быть использовано любое количество шкивов, но из-за трения, а как следствие быстрого износа механизмов, древние грузоподъемные машины были ограничены пятью шкивами. Если требовалась большая грузоподъемность механизма вместо увеличения количества шкивов в пределах одного блока римляне использовали два или более блоков шкивов с закрепленной к каждому из них своей бригады работников. Потеря мощности вследствие трения для средневекового крана оценивается в 20 процентов от максимальной мощности.

Лебедки и кабестаны

Другим усовершенствованием в области подъема и перемещения грузов стало изобретение лебедки и кабестана, которые стали применяться в производстве примерно в то же время, что и шкив. Единственное различие между лебедкой и кабестаном заключается в том, что первый механизм имеет горизонтальную ось, а второй вертикальную.

Механическое преимущество этих машин появлялось вследствие кругового вращения троса вокруг барабанной оси. Таким образом, человек, управляющий лебедкой, способен поднять груз в 6 раз больше, чем в случае, когда он бы просто тащил трос.

Подъемный механизм, сочетающий в себе блоки со шкивами и лебедки, давал возможность одному человеку поднимать груз весом до 1500 килограмм. В то время как для буксировки по рампе каменного блока такого же веса в Древнем Египте пришлось бы задействовать порядка 30 – 60 человек.

Ступальное колесо

Еще более производительным подъемным механизмом в сравнении с лебедкой было ступальное колесо, первые упоминания о котором датируется 230 годом до нашей эры. Такой грузоподъемный механизм имел в своей основе колесо диаметром 4 – 5 метров, что давало большее механическое преимущество из-за большего радиуса колеса в сравнении с радиусом оси. Более того, при подъеме груза с помощью лебедки, человек генерировал энергию только с помощью рук, а в случае со ступальным колесом подъемная сила появлялась от ходьбы/бега человека или тягловых животных. Таким образом, такое колесо повышало производительность человека в 70 раз и давало возможность одному человеку, приложившему усилие 50 кг, поднимать груз весом до 3500 кг. Некоторые из таких кранов (особенно портовые) снабжали двумя подъемными колесами. В свою очередь на каждом таком колесе размещали по два человека, идущих бок о бок. Максимальная грузоподъемность этих кранов, даже с учетом потери 20% из-за трения, достигала 11.2 тонн. Но такие механизмы имели и свои минусы. Например, для подъема груза на 10-метровую высоту человеку приходилось преодолеть расстояние в 140 метров, причем на довольно приличной скорости. Долго подобную скорость один человек поддерживать был не в силах, поэтому рабочую силу приходилось часто менять.

Подъемные башни

Несмотря на то, что мощность подъемного колеса впечатляет, задаешься вопросом – а как же наши предки поднимали более тяжелые грузы, например 500-тонные обелиски, в эпоху Римской империи? В основном, таким же методом, как и сейчас – способом объединения нескольких грузоподъемных устройств.

Один из методов, основанный на постройке огромной башни с множеством одновременно работающих кабестанов, описал в своей книге знаменитый инженер-строитель Ватикана — Доминик Фонтана. Там дано подробное описание перемещения огромного обелиска с римского ипподрома на площадь собора Святого Петра. Процесс переноса обелиска включал в себя демонтаж, передвижение и подъем 350-тонной колонны на новом месте.

Грузоподъемные механизмы средневековья

После распада Римской империи, использование сложных грузоподъемных механизмов в Европе, практически остановилось на долгие 800 лет. Краны под управлением лебедок начали снова появляться только в конце 12 века. Краны с большими ступальными колесами снова начали использовать в 13 веке во Франции и в 14 веке в Англии, то есть немного позже, чем началось массовое использование ветряных мельниц и водяных колес. По сравнению с эпохой Римской империи до наших дней дошло очень мало технической информации о подъемных механизмах средневековья. Большинство наших исторических знаний исходит от картин и от иллюстраций в рукописях того времени.

Но все же несколько подъемных кранов с ступальными колесами были сохранены на чердаках церквей и соборов. Большие подъемные краны были необходимы для строительства готической архитектуры средневековья. Здания этой эпохи были значительно выше, чем самые высокие сооружения времен Римской империи.

Сначала краны, используемые для строительства готических церквей, монтировали на земле. Затем при необходимости такие краны разбирались и переносились на все новые и новые высотные отметки пока храм не отстроится. Часть этих кранов оставляли над сводами и под крышей, где они могли бы пригодиться для ремонтных работ.

Новым явлением для средневековья был стационарный портовый кран, снабженный подъемным механизмом со ступальным колесом. Древние греки и римляне его не использовали по причине наличия большой рабской силы, которую они использовали при разгрузке и загрузке судов. Римский стандарт транспортировочного контейнера (амфора) был достаточно мал и мог легко и быстро загружаться и выгружаться с помощью человеческого ленточного конвейера и пандуса.

Портовые краны впервые появились во Фландрии, Голландии и Германии в 13 веке, а также в Англии в 14 веке. Они были более мощными, чем краны, применяемые в строительстве, и оснащены не одним, а двумя подъемными колесами, имеющих диаметр до 6,5 метров. Эти более мощные подъемные механизмы были нацелены на более высокие скорости подъемы и опускания, нежели на большую грузоподъемность. При загрузке и погрузке грузов скорость была более важна, чем в строительстве.

Как правило, портовые краны имели крышу для защиты рабочих и механизма от осадков. Эти подъемные машины были схожи с ветряными мельницами, как технически, так и по внешнему виду. Предположительно в Европе было построено около 100 портовых кранов и всего 10 таких конструкций сохранилось до наших дней.

Поворотные краны

Сегодня стрела подъемного крана может вращаться на 360 градусов одновременно с перемещением груза по горизонтали вдоль стрелы. Первоначально основная часть кранов средневековья использовалась только для вертикального перемещения груза. Положение груза относительно оси стрелы можно было лишь незначительно регулировать с помощью троса, привязанного к перемещаемому грузу. Массовое применение кранов с поворотным механизмом стрелы датируется 17-м веком, что позволило значительно сократить сроки строительства.

Железные краны

В 19-м веке в конструкциях грузоподъемных механизмов появились три важных нововведения. Первым и наиболее важным нововведением было использование железных элементов зубчатых передач вместо деревянных, что сделало подъемные машины более эффективными, надежными и мощными. В 1834 году был построен первый чугунный кран. И в этот же год был изобретен крепкий стальной трос, который был более надежной альтернативой тросу из натурального волокна. Третье нововведение – применение энергии паровых машин, при конструировании кранов. Теперь скорость подъема груза зависела от мощности паровой машины.

Металлический трос вскоре нашел широкое применение при производстве грузоподъемных механизмов, а вот две другие новинки прижились только со временем. Дерево было предпочтительным материалом для многих кранов даже в двадцатом веке, особенно в регионах, где древесина была в изобилии. Энергия парового двигателя также внедрялась очень неохотно и медленно. «Ручные» краны оставались популярны до середины 20-го века.

Башенные краны

Наличие узких улочек в европейских городах затрудняло установку громоздких кранов. Это было основной причиной для создания в начале 20-го века первых башенных кранов. Этот механизм обладал всеми необходимыми качествами для строительства в стесненных условиях: он был высоким и мощным, но в то же время не занимал больших площадей. Первым производителем башенных кранов была компания «Maschinenfabrik Julius Wolff & Co» (Германия), которая в 1908 году выпустила первую партию кранов, рассчитанных для строительных нужд.

Со временем конструкция башенных кранов совершенствовалась, и в 1949 году Ганс Либхерр построил поворотный башенный кран со стрелой, которая была закреплена на верху металлической конструкции. Такой кран мог не только поднимать груз, но и перемещать в любое место строительства не опуская его. Начиная с 60-х годов двадцатого века конструкции грузоподъемных механизмов изменялись незначительно и касалось это в основном систем безопасности и управления, а также увеличения грузового момента.

Десятилетний проект, призванный приоткрыть завесу тайны над одной из самых известных научных загадок последнего столетия, дал необычные результаты. Многие любители неразгаданных тайн древности наверняка слышали про Антикитерский механизм — необычную штуковину, поднятую со дна моря в 1901 году.

Antikythera Mechanism Research Project

Механическое устройство было найдено близ греческого острова Антикитера, в честь которого и получило свое название.

Находка представляла собой механизм из минимум 30 бронзовых шестерен, помещенных в деревянный корпус.

Механизм был поднят на поверхность полностью, однако затем разделен на три фрагмента, которые в настоящее время разделены на 82 части, которые хранятся в Национальном археологическом музее в Афинах. Четыре фрагмента устройства включают шестерни, самая крупная из которых имеет в диаметре 140 мм и 223 зубца. Некоторые из частей механизма имеют надписи, чтение которых затруднено из-за толстого слоя окислов. Десятилетиями ученые не могли постичь предназначение загадочного устройства, и лишь в последние полвека новые методы анализа позволили узнать о нем больше.

Brett Seymour/WHOI

Установлено, что его собрали во II веке до нашей эры и он является самым сложным механизмом древнего мира, дошедшим до наших дней. Ничего сравнимого по сложности не было изготовлено человечеством по меньшей мере еще в течение тысячи лет.

Антикитерский механизм принято называть первым компьютером, поскольку это аналоговое устройство могло моделировать сложные астрономические циклы.

До 2005 года механизм изучался при помощи рентгеновского анализа, однако в 2005 году был дан старт масштабному международному проекту Antikythera Mechanism Research Project по изучению и реконструкции загадочного девайса. Тогда-то ученые из разных стран и начали применять более совершенные физические методы. До последнего времени ученые были сосредоточены на предназначении отдельных шестеренок механизма. Последнее же исследование, результаты которого опубликованы в журнале Almagest и накануне были обнародованы на специальной встрече в Афинах, было посвящено расшифровке надписей, присутствующих на каждой оставшейся целой поверхности. «Это как обнаружить абсолютно новую рукопись», — считает Майк Эдмандс, профессор астрофизики из Университета Кардиффа.

Известно, что древнегреческий прибор имел ручку, которую можно было вращать в обе стороны — в «будущее» и «прошлое». Вместо часов и минут стрелки на переднем циферблате указывали положение Солнца, Луны и планет на небе, о чем «Газета.Ru» . Этот циферблат имел две концентрические шкалы, показывающие месяц и знаки зодиака, так что солнечная стрелка указывала дату и его положение в небе одновременно. А два других спиральных циферблата на задней стороне устройства работали как календарь и предсказывали затмения. Поверхность между этими циферблатами содержала текст из 3400 символов, расшифровкой которого и занялись ученые. Кстати, по оценкам автора исследования Александра Джонса из Института изучения древнего мира в Нью-Йорке, всего на механизме было до 20 тыс. символов.

Буквы на приборе мелкие (каждая — не больше миллиметра) и часто скрыты под толстым слоем коррозии, поэтому читать почти утраченный текст едва удается благодаря методам компьютерной томографии. Текст на примыкающей к циферблатам площадкам описывает появление и заход созвездий в разные даты в течение года, что заставило ученых сделать вывод, что перед ними сложный звездный календарь, или парапегма, которая предсказывает наступление и таких астрономических событий, как солнцестояние и равноденствие.

А описание этих событий помогло ученым решить главную загадку прибора — место его происхождения. Они выяснили, что создававший его астроном жил на широте 35 градусов. Это исключает Египет и север Греции и выдает единственно возможное решение —

остров Родос, откуда устройство, скорее всего, было отправлено кораблем на север страны.

Кроме того, подписи оказались сделаны двумя разными людьми — это выдал анализ почерка, поэтому прибор не мог быть сделан мастером-одиночкой. Расшифровав надписи на задней стенке, ученые поняли, что они описывают предстоящие затмения. Ученых удивило, что в них говорится о цвете и размере Солнца или Луны при затмении, и даже о ветре при каждом из них. Сегодня известно, что предсказать цветовой характер этих явлений заранее невозможно, да это и не имеет никакого научного смысла.

Однако в Древней Греции к подобным знакам относились серьезно, по ним предсказывали погоду и даже судьбу отдельных людей и государств. Греки унаследовали эти верования от вавилонян, чьи жрецы-астрономы вглядывались в небеса в поисках дурных предзнаменований. Тексты, выгравированные на Антикитерском механизме, шли дальше — вместо предсказания судьбы на основе таких знаков, как цвет затмения и направление ветра,

они сами прогнозировали их прежде, чем они наблюдались.

Это было в духе общего древнегреческого тренда «заменять астрономию вычислением и предсказанием», поясняет Джонс.

Астрологический характер текстов немало удивил ученых, поскольку остальные функции механизма носят чисто астрономический характер, за исключением календаря, который использует разговорные названия месяцев и показывает наступление спортивных событий, в том числе Олимпийских игр. «Антикитерский механизм воспроизводит эллинистическую космологию, в которой астрономия, метеорология и гадание по звездам были переплетены вместе», — считают ученые.

На прошедшей конференции вновь прозвучало утверждение, что столетняя находка по праву может считаться древнейшим известным компьютером.