Что такое «пояса Ван Аллена»? История открытия радиационных поясов Земли: кто же, когда и как

Радиационный пояс Земли (РПЗ), или пояс Ван Аллена - это область ближайшего космического пространства около нашей планеты, имеющая вид кольца, в которой находятся гигантские потоки электронов и протонов. Земля удерживает их с помощью дипольного магнитного поля.

Открытие

РПЗ был обнаружен в 1957-58 гг. учеными из Соединенных Штатов и СССР. "Эксплорер-1" (на фото ниже), первый космический спутник США, запуск которого состоялся в 1958 году, предоставил очень важные данные. Благодаря проведенному американцами бортовому эксперименту над поверхностью Земли (на высоте примерно 1000 км), был найден пояс радиации (внутренний). Позже на высоте около 20000 км была обнаружена вторая такая зона. Не существует четкой границы между внутренним и внешним поясами - первый постепенно переходит во второй. Эти две зоны радиоактивности различаются по степени заряженности частиц и их составу.

Данные области стали называться поясами Ван Аллена. Джеймс Ван Аллен - физик, эксперимент которого помог их обнаружить. Ученые выяснили, что эти пояса состоят из солнечного ветра и заряженных частиц космических лучей, которые притягиваются к Земле ее магнитным полем. Каждый из них формирует тор вокруг нашей планеты (фигуру, которая по форме напоминает пончик).

В космосе с того времени было проведено множество экспериментов. Они позволили исследовать основные особенности и свойства РПЗ. Не только у нашей планеты существуют радиационные пояса. Они имеются и у других небесных тел, которые обладают атмосферой и магнитным полем. Пояс радиации Ван Аллена был обнаружен, благодаря межпланетным кораблям США у Марса. Кроме того, американцы нашли его у Сатурна и Юпитера.

Дипольное магнитное поле

У нашей планеты имеется не только пояс Ван Аллена, но и дипольное магнитное поле. Оно представляет собой набор магнитных оболочек, вложенных друг в друга. Структура этого поля напоминает кочан капусты или луковицу. Магнитную оболочку можно представить себе как сотканную из силовых магнитных линий замкнутую поверхность. Чем ближе к центру диполя находится оболочка, тем больше становится напряженность магнитного поля. Кроме того, импульс, который требуется заряженной частице для проникновения в нее извне, также увеличивается.

Итак, N-я оболочка обладает P n . В случае, когда начальный импульс частицы не превышает P n , ее отражает магнитное поле. Частица тогда возвращается в космическое пространство. Однако бывает и так, что она оказывается на N-й оболочке. В этом случае она уже не способна ее покинуть. Захваченная частица будет находиться в ловушке до тех пор, пока она не рассеется или, столкнувшись с остаточной атмосферой, не потеряет энергию.

В нашей планеты одна и та же оболочка находится на различном расстоянии от земной поверхности на разных долготах. Это происходит из-за несовпадения оси магнитного поля с осью вращения планеты. Данный эффект заметен лучше всего над Бразильской магнитной аномалией. В этой области силовые магнитные линии опускаются, и захваченные частицы, движущиеся по ним, могут оказаться ниже 100 км высоты, а значит, погибнуть в земной атмосфере.

Состав РПЗ

Внутри радиационного пояса распределение протонов и электронов неодинаково. Первые находятся во внутренней его части, а вторые - во внешней. Поэтому на раннем этапе исследования ученые считали, что имеются внешний (электронный) и внутренний (протонный) радиационные пояса Земли. В настоящее время это мнение уже неактуально.

Наиболее значительным механизмом генерации заполняющих пояс Ван Аллена частиц является распад альбедных нейтронов. Необходимо отметить, что нейтроны создаются, когда атмосфера взаимодействует с Поток этих частиц, движущихся по направлению от нашей планеты (нейтроны альбедо), проходит через магнитное поле Земли беспрепятственно. Однако они являются нестабильными и легко распадаются на электроны, протоны и электронное антинейтрино. Радиоактивные альбедные ядра, обладающие большой энергией, распадаются внутри зоны захвата. Именно так пояс Ван Аллена пополняется позитронами и электронами.

РПЗ и магнитные бури

Когда начинаются сильные эти частицы не просто ускоряются, они покидают радиоактивный пояс Ван Аллена, высыпаясь из него. Дело в том, что, если конфигурация магнитного поля меняется, зеркальные точки могут быть погружены в атмосферу. В этом случае частицы, теряя энергию (ионизационные потери, рассеяние) изменяют питч-углы, а затем гибнут, достигнув верхних слоев магнитосферы.

РПЗ и северное сияние

Радиационный пояс Ван Аллена окружен плазменным слоем, представляющим собой захваченные потоки протонов (ионов) и электронов. Одна из причин такого явления, как северное (полярное) сияние - это то, что частицы высыпаются из плазменного слоя, а также частично из внешнего РПЗ. Северное сияние представляет собой излучение атомов атмосферы, которые возбуждаются из-за столкновения с высыпавшимися из пояса частицами.

Исследование РПЗ

Почти все основополагающие результаты исследований таких образований, как радиационные пояса, были получены примерно в 1960-70-е годы. Недавние наблюдения с применением межпланетных кораблей и новейшей научной аппаратуры позволили ученым добыть очень важные новые сведения. Пояса Ван Аллена вокруг Земли продолжают изучаться и в наше время. Вкратце расскажем о важнейших достижениях в этой области.

Данные, полученные от "Салюта-6"

Исследователи из МИФИ в начале 80-х годов прошлого века исследовали потоки электронов с высоким уровнем энергии в ближайшей окрестности нашей планеты. Для этого они использовали аппаратуру, которая находилась на орбитальной станции "Салют-6". Она позволяла ученым очень эффективно выделять потоки позитронов и электронов, энергия которых превышает 40 МэВ. Орбита станции (наклонение 52°, высота около 350-400 км) проходила в основном ниже радиационного пояса нашей планеты. Однако она все-таки задевала внутреннюю его часть у Бразильской магнитной аномалии. При пересечении этого района были найдены стационарные потоки, состоящие из высокоэнергичных электронов. В РПЗ до этого эксперимента были зафиксированы только электроны, энергия которых не превышала 5 МэВ.

Данные искусственных спутников серии "Метеор-3"

Исследователи из МИФИ провели дальнейшие измерения на искусственных спутниках нашей планеты серии "Метеор-3", у которых высота круговых орбит составляла 800 и 1200 км. На этот раз прибор внедрился в РПЗ очень глубоко. Он подтвердил результаты, которые были получены ранее на станции "Салют-6". Затем исследователи получили еще один важный результат, использовав установленные на станциях "Мир" и "Салют-7" магнитные спектрометры. Было доказано, что обнаруженный ранее стабильный пояс состоит исключительно из электронов (без позитронов), энергия которых очень велика (до 200 МэВ).

Открытие стационарного пояса ядер CNO

Группа исследователей из НИЯФ МГУ в конце 80-х-начале 90-х годов прошлого века осуществила эксперимент, нацеленный на изучение ядер, которые расположены в ближайшем космическом пространстве. Данные измерения были проведены с использованием пропорциональных камер и ядерных фотоэмульсий. Они осуществлялись на ИСЗ серии "Космос". Ученые обнаружили наличие потоков ядер N, O и Ne в области космического пространства, в которой орбита искусственного спутника (наклонение 52°, высота около 400-500 км) пересекала Бразильскую аномалию.

Как показал анализ, эти ядра, энергия которых достигала нескольких десятков МэВ/нуклон, имели не галактическое, альбедное или солнечное происхождение, поскольку они никак не могли с такой энергией глубоко внедриться в магнитосферу нашей планеты. Так ученые обнаружили аномальную компоненту космических лучей, захваченную магнитным полем.

Малоэнергичные атомы, находящиеся в межзвездной материи, способны проникать в гелиосферу. Затем ультрафиолетовое излучение Солнца их ионизирует однократно или двукратно. Образовавшиеся в результате этого заряженные частицы разгоняются на фронтах солнечного ветра, достигая нескольких десятков МэВ/нуклон. Затем они проникают в магнитосферу, в которой захватываются и полностью ионизируются.

Квазистационарный пояс протонов и электронов

На Солнце 22 марта 1991 г. случилась мощная вспышка, которая сопровождалась выбросом огромной массы солнечного вещества. Оно достигло магнитосферы к 24 марта и изменило ее внешнюю область. В магнитосферу ворвались частицы солнечного ветра, имевшие большую энергию. Они достигли района, в котором тогда находился CRESS, американский спутник. Установленные на нем приборы зафиксировали резкое возрастание протонов, энергия которых составляла от 20 до 110 МэВ, а также мощных электронов (около 15 МэВ). Это свидетельствовало о появлении нового пояса. Сначала квазистационарный пояс наблюдали на целом ряде космических аппаратов. Однако лишь на станции "Мир" он изучался в течение всего срока жизни, составляющего около двух лет.

Кстати, в 60-х годах прошлого столетия в результате того, что в космосе взорвались ядерные устройства, появился квазистационарный пояс, состоящий из электронов, имеющих малые энергии. Он просуществовал примерно 10 лет. Радиоактивные осколки деления распадались, что и было источником заряженных частиц.

Есть ли РПЗ на Луне

У спутника нашей планеты отсутствует радиационный пояс Ван Аллена. Кроме того, у него нет и защитной атмосферы. Поверхность Луны открыта солнечным ветрам. Сильная если бы она произошла во время лунной экспедиции, испепелила бы и астронавтов, и капсулы, поскольку произошел бы выброс колоссального потока радиации, которая является смертельной.

Можно ли защититься от космической радиации

Этот вопрос уже долгие годы интересует ученых. В небольших дозах радиация, как известно, практически не влияет на состояние нашего здоровья. Однако она безопасна лишь тогда, когда не превышает определенный порог. Знаете ли вы, какой уровень радиации вне пояса Ван Аллена, на поверхности нашей планеты? Обычно содержание частиц радона и тория не превышает 100 Бк на 1 м 3 . Внутри РПЗ эти показатели намного выше.

Безусловно, радиационные пояса Земли Ван Аллена очень опасны для человека. Их воздействие на организм изучало множество исследователей. Советские ученые в 1963 году заявили Бернарду Ловеллу, известному британскому астроному, что им неизвестно средство защиты человека от воздействия радиации в космосе. Это означало, что с ней не могли справиться даже толстостенные оболочки советских аппаратов. Каким же образом используемый в капсулах американцев тончайший металл, почти как фольга, смог защитить астронавтов?

Согласно заверениям НАСА, оно отправило астронавтов на Луну лишь тогда, когда не ожидалось вспышек, которые организация способна предсказывать. Именно это позволило снизить до минимума радиационную опасность. Другие специалисты, впрочем, утверждают, что можно только примерно предсказать дату больших излучений.

Пояс Ван Аллена и полет на Луну

Леонов, советский космонавт, в 1966 году все же вышел в открытый космос. Однако он был одет в сверхтяжелый свинцовый костюм. А уже через 3 года астронавты из США прыгали по лунной поверхности, причем явно не в тяжеленных скафандрах. Возможно, специалистам из НАСА за эти годы удалось обнаружить сверхлегкий материал, который надежно защищает космонавтов от радиации? до сих пор вызывает множество вопросов. Один из основных аргументов тех, кто считает, что американцы не высаживались на нее - существование радиационных поясов.

Схема внутреннего и внешнего радиационных поясов

Радиационный пояс - область магнитосфер , в которой накапливаются и удерживаются проникшие в магнитосферу высокоэнергичные заряженные частицы (в основном протоны и электроны).

Радиационный пояс Земли

Другое название (обычно в западной литературе) - «радиационный пояс Ван Аллена» (Van Allen radiation belt ).

РПЗ (пояс Ван Аллена)

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E , меньше критической. Те же частицы с энергией E < Е кр , которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс Земли (внутренний) был предсказан советскими учёными С. Н. Верновым и А. Е. Чудаковым, а также американским учёным Джеймсом ван Алленом. Существование радиационного пояса было подтверждено «Спутник-3», запущенным в 1958 году. Радиационный пояс в первом приближении представляет собой тороид, в котором выделяются две области:

  • внутренний радиационный пояс на высоте ≈ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ;
  • внешний радиационный пояс на высоте ≈ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ.

Зависимость положения нижней границы радиационного пояса - долготная. Над Атлантикой возрастание интенсивности излучения начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции, то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата частиц.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем - электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сотен килоэлектронвольт соответственно. Эти частицы имеют существенно иное пространственное распределение (по сравнении с проникающими).

Максимум интенсивности протонов низких энергий расположен на расстоянии около 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам, однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E > 1-5 МэВ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

Радиационные пояса планет

Радиоизображение Юпитера: яркие области (белые) - радиоизлучение радиационных поясов

Благодаря наличию сильного магнитного поля, ( , и ) также обладают сильными радиационными поясами, напоминающими внешний радиационный пояс Земли. Советские и американские космические зонды показали, что , и с помощью 410 на высокоэллиптическую орбиту с высотой апогея около 30 тысяч километров были выведены два идентичных зонда RBSP (Radiation Belt Storm Probes ), предназначенных для изучения радиационных поясов. Впоследствии они были переименованы в «Зонды Ван Аллена» (Van Allen Probes ). Два аппарата нужны были для того, чтобы отличить изменения, связанные с переходом из одной области в другую с изменениями, происходящими в самих поясах. Одним из основных результатов этой миссии было открытие третьего радиационного пояса, появляющегося на короткое время порядка нескольких недель. На сентябрь 2015 года работа обоих зондов продолжается.



До сего времени считалось, что во внутреннем поясе Ван Аллена радиация довольно сильная. И вот тут устоявшееся мнение недавно было разрушено исследованиями, которые показали, что на самом-то деле самые энергичные электроны, самые быстрые, которые находятся во внутреннем поясе, довольно редки. Так что астронавты могут выдохнуть. Им теперь не так страшно летать в той области, поскольку нет опасности сильного повреждения здоровья радиацией.

Последние данные должны помочь ученым понять, а также зафиксировать, эффекты от высоко расположенных мест ядерных взрывов. Причем работа ведется в сложных условиях, когда приходится обнаруживать слабые сигналы через сильный фон помех. Исследователи сравнивают свою работу с поиском пары снежинок в сильнейшем ливне. Ведь этот ливень как-то надо игнорировать, чтобы более подробно изучить снежинки, понять, какие они, как образуются и прочее.

Что такое пояс Ван Аллена

По сути пояс Ван Аллена – это две зоны кольцеобразного вида, состоящие из заряженных частиц. И это все окружает нашу планету. К сожалению прошлые миссии не справились с задачей различить электроны от протонов с высокой энергией во внутреннем поясе. Но сегодня применяется специальное устройство Магнитный электронный и ионный спектрометр – MagEIS, который позволил при помощи зондов рассмотреть отдельные частица пояса. Были обнаружены необычные факты. Во внутреннем поясе нет ни одного сверхбыстродействующего электрона, известного, как релятивистский.

Конечно, все лаборатории мира проявляют большой интерес в отношении прогноза космической погоды для наших аппаратов: спутников, кораблей. Недаром существует специальное соглашение о запрете проведения испытаний ядерного оружия в космосе.

Пока что наблюдения за Ван Алленом показали, что внешний пояс намного активней, и когда происходят интенсификация магнитных бурь, когда частицы солнечного ветра бьют по нашей системе, он начинает пульсировать. Пояс как бы растет и тут же сжимается в ответ на такой раздражитель. Внутренний же пояс более стабилен. Разве что если буря слишком интенсивная, то может протолкнуть релятивистские электроны вглубь ближе к Земле.

Начало космонавтики ознаменовалось рядом открытий, одним из которых было открытие радиационных поясов Земли. Внутренний радиационный пояс Земли был открыт американским учёным Джеймсом ван Алленом после полета Эксплорер-1. Внешний радиационный пояс Земли был открыт советскими учёными С. Н. Верновым и А. Е. Чудаковым после полёта Спутник-3 в 1958 году.

На некоторых высотах первые спутники попадали в области, которые были густо насыщенны заряженными частицами, обладающими очень большой энергией, резко отличными от наблюдавшихся ранее космических частиц, и первичных, и вторичных. После обработки данных со спутников стало ясно, что речь идет о заряженных частицах, захваченных магнитным полем Земли.

Известно, что любые заряженные частицы, попав в магнитное поле, начинают «навиваться» на силовые линии магнитного поля, одновременно передвигаясь вдоль них. Размеры витков получающейся спирали зависят от первоначальной скорости частиц, их массы, заряда и напряженности магнитного поля Земли в той области околоземного пространства, в которую они влетели и изменили направление движения.

Магнитное поле Земли неоднородно. У полюсов оно «сгущается» - уплотняется. Поэтому заряженная частица, начавшая движение по спирали вдоль «оседланной» ею магнитной линии из области, близкой к экватору, по мере приближения к какому-либо полюсу испытывает все большее и большее сопротивление, пока не остановится. А затем возвращается назад к экватору и дальше к противоположному полюсу, откуда начинает движение в обратном направлении. Частица оказывается как бы в гигантской «магнитной ловушке» планеты.

Эти области магнитосферы, где накапливаются и удерживаются проникшие в нее высокоэнергичные заряженные частицы (в основном протоны и электроны) и частицы с кинетической энергией E меньше критической называются радиационными поясами. Земля имеет три радиационных пояса, а сейчас открыли еще и четвертый. Радиационный пояс Земли представляет собой тороид.

Первый такой пояс начинается на высоте примерно 500 км над западным и 1500 км над восточным полушарием Земли. Самая большая концентрация частиц этого пояса - его ядро - находится на высоте двух-трех тысяч километров. Верхняя граница этого пояса достигает трех-четырех тысяч километров над поверхностью Земли.

Второй пояс простирается от 10-11 до 40-60 тыс. км с максимальной плотностью частиц на высоте 20 тыс. км.

Внешний пояс начинается на высоте 60-75 тыс. км.

Приведенные границы поясов определены пока еще только приблизительно и, видимо, в каких-то пределах периодически изменяются.

Отличаются эти пояса друг от друга тем, что первый из них, самый близкий к Земле, состоит из положительно заряженных протонов, обладающих очень большой энергией - порядка 100 Мое. Их смогла захватить и удержать только самая плотная часть магнитного поля Земли. Поток протонов в нем довольно устойчив во времени и не испытывает резких колебаний.

Второй пояс состоит, главным образом, из электронов с энергией «всего лишь» 30-100 кэв. В нем движутся большие потоки частиц, чем во внутреннем поясе, он испытывает резкие колебания.

В третьем поясе, где магнитное поле Земли самое слабое, удерживаются частицы с энергией 200 эв и более.

Кроме того, электроны с энергией меньше 1 МэВ заполняют почти всю область захвата. Для них нет разделения на пояса, они присутствуют во всех трех поясах.

Чтобы понять, насколько опасны для всего живого на Земле заряженные частицы в радиационных поясах, приведем для сравнения пример. Так, обычное рентгеновское излучение, применяемое кратковременно для медицинских целей, обладает энергией 30-50 кэв, а мощные установки для просвечивания огромных слитков и глыб металла - от 200 кэв до 2 Мэв. Поэтому самыми опасными для космонавтов будущего и для всего живого при полетах на другие планеты являются первый и второй пояс.

Вот почему ученые сейчас столь упорно и тщательно пытаются уточнить месторасположение и форму этих поясов, распределение частиц в них. Пока ясно лишь одно. Коридорами для выхода обитаемых космических кораблей на трассы к другим мирам будут области, близкие к магнитным полюсам Земли, свободные от частиц больших энергий.

Естествен вопрос: откуда взялись все эти частицы? Их в основном выбрасывает из своих недр наше Солнце. Сейчас уже установлено, что Земля, несмотря на огромное расстояние от Солнца, находится в самой внешней части его атмосферы. Это, в частности, подтверждается тем, что каждый раз, когда возрастает солнечная активность, а следовательно, увеличиваются количество и энергия испускаемых Солнцем частиц, возрастает и количество электронов во втором радиационном поясе, который как бы под напором «ветра» из этих частиц прижимается к Земле.

Разделение зарядов на слои и образование радиационных поясов Земли происходит под действием акусто-магнитоэлектрического эффекта, заключающегося в том, что коротковолновое излучение Солнца, проходя через плазму поперек силовых линий магнитного поля Земли, производит сортировку зарядов по энергетическому состоянию на разные уровни. Наличие определенного количества зарядов в каждом слое, в том числе и на поверхности Земли, дает основание предположить, что Землю вместе со всей атмосферой можно рассматривать как электрическую машину, которую по конструкции можно отождествить со сферической многослойной, многороторной, асинхронной электрической емкостно-индуктивной машиной.

Захваченные в магнитную ловушку Земли частицы под действием силы Лоренца совершают колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно. Одновременно частицы совершают более медленное перемещение (долготный дрейф) вокруг Земли.

Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит «отражение» частицы. Она начинает двигаться в обратном направлении - к сопряжённой зеркальной точке в др. полушарии.

Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией ~ 100 Мэв совершает за время ~ 0,3 сек. Время нахождения («жизни») такого протона в геомагнитной ловушке может достигать 100 лет (~ 3×109 сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое.

Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, а электроны - в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.

Радиационный пояс Земли

Другое название (обычно в западной литературе) - «радиационный пояс Ван Аллена » (англ. Van Allen radiation belt ).

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E , меньше критической. Те же частицы с энергией E < Е кр , которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс Земли (внутренний) был предсказан советскими учёными С. Н. Верновым и А. Е. Чудаковым , а также американским учёным Джеймсом ван Алленом . Существование радиационного пояса было продемонстрировано измерениями на «Спутнике-2 » , запущенном в 1957 году, а также на «Эксплорере-1 », запущенном в 1958 году. Радиационный пояс в первом приближении представляет собой тороид , в котором выделяются две области:

  • внутренний радиационный пояс на высоте ≈ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ ;
  • внешний радиационный пояс на высоте ≈ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ .

Высота нижней границы радиационного пояса меняется на одной и той же географической широте по долготам из-за наклона оси магнитного поля Земли к оси вращения Земли, а на одной и той же географической долготе она меняется по широтам из-за собственной формы радиационного пояса, обусловленной разной высотой силовых линий магнитного поля Земли. Например, над Атлантикой возрастание интенсивности излучения начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции , то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата частиц.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем - электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сотен килоэлектронвольт соответственно. Эти частицы имеют существенно иное пространственное распределение (по сравнении с проникающими).

Максимум интенсивности протонов низких энергий расположен на расстоянии около 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам , однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E > 1-5 МэВ ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

Радиационные пояса планет

Благодаря наличию сильного магнитного поля , планеты-гиганты (Юпитер , Сатурн , Уран и Нептун) также обладают сильными радиационными поясами, напоминающими внешний радиационный пояс