Метод автоклавного формования. Пути повышения качества деталей из пкм при вакуумном формовании. Процессы упругого формования конструкций
Описывается способ отверждения композиционных материалов, осуществляемый путем ступенчатого нагревания и выдержки до получения отвержденного композиционного материала. Нагревание осуществляют от комнатной температуры до 128 - 132 o C со скоростью 0,8 - 1,2 o C/мин, выдерживают при этой температуре 28 - 32 мин, после чего нагревают до (175 1) o C со скоростью 1,8 - 2,2 o C/мин, причем в ходе нагревания и выдержки на температурах изотерм проводят постоянное измерение величин электропроводности и тангенса угла диэлектрических потерь, а процесс отверждения завершают при достижении постоянных во времени значений указанных величин. Технический результат - упрощение процесса, повышение качества материала за счет достижения беспористости матрицы - связующего ЭНФБ и проведения режима отверждения композитов по режиму получения беспористой матрицы. При этом полимерные материалы визуально однородны по объему, имеют стабильную (99%) степень отверждения. 4 табл.
Изобретение относится к области получения композиционных материалов на основе эпоксифенольного связующего марки ЭНФБ, которые могут найти применение при получении препрегов. Связующее ЭНФБ состоит из смеси следующих компонентов: эпоксинаволачной смолы ЭН-6, анилинофенолформальдегидной смолы СФ-341 А, фурфурилглицидилового эфира ЭФУ, катализатора УП-605/3 и спирто-ацетоновой смеси (Технологическая инструкция ТИ 59-1004-82. Приготовление, контроль качества и хранение связующих 5-211Б, ЭНФБ. Копия выписки прилагается). Известен режим автоклавного формования углепластика КМУ-4 на связующем ЭНФБ /Технологическая инструкция ТИ 59-1004-82. Режим автоклавного формования углепластика КМУ-4 на связующем ЭНФБ п/я А-3396), который является наиболее близким по технической сущности способом отверждения композиционного материала на основе эпоксифенольного связующего ЭНФБ путем ступенчатого нагревания и выдержки до получения отвержденного композиционного материала. Согласно известному способу проводят нагрев до (801) o C за 20-30 мин при создании вакуума 0,08-0,09 МПа (0,8-0,9 кгс/см 2) с последующим выключением вакуумного насоса и соединением вакуумной системы с атмосферой, дальнейшим подъемом температуры до второй температурной точки (1107 o C) в течение 10-15 мин при достижении давления к этому времени 0,6 МПа (6 кгс/см 2), подъемом температуры до третьей температурной точки, изменяющейся в зависимости от типа наполнителя (1655 o C) для КМУ-4 или (1755 o C) для КМУ-43 с выдержкой на данной точке в течение 6 ч. То есть, нагрев в среднем осуществляют со скоростью 2-3 o C/мин с выключением вакуума в интервале 80-175 o C с общим циклом термообработки порядка 7 ч. Охлаждение проводят со скоростью 0,5-1,0 o C/мин до 40-50 o C под давлением не менее 0,25 МПа (2,5 кгс/см 2). Недостатком данного способа является длительный цикл отверждения (порядка 7 ч) и возможность получения некачественного материала из-за его прогрева на высокой технологической скорости на участке гелеобразования в температурном интервале 80-175 o C с выключением вакуума при нарастающем давлении, что может привести к запиранию летучих, образующихся в процессе реакции отверждения (поликонденсации) внутри материала, и их последующему взрывному выходу, вызывающему коробление получаемого ПКМ. Кроме того, для разных типов наполнителей используется различная температура максимального отверждения, что делает режим неприемлемым для других видов наполнителей, причем длительное время термообработки при температуре максимального отверждения может вызвать дополнительную порчу материала вследствие термодеструкции. Предлагаемым изобретением решаются следующие задачи: упрощается технология получения композиционных материалов на основе связующего ЭНФБ за счет возможности проведения режима отверждения с использованием одной и той же температуры отверждения для различных видов наполнителей, сокращения в два раза режима отверждения по сравнению с прототипом. При этом материалы получаются гарантированно без пор и воздушных включений со стабильной степенью отверждения 99%. Снижаются трудоэнергозатраты. Для достижения этого технического результата в способе отверждения композиционных материалов на основе эпоксифенольного связующего ЭНФБ, осуществляемого путем ступенчатого нагревания и выдержки до получения отвержденного композиционного материала, осуществляют нагревание от комнатной температуры до 128-132 o C со скоростью 0,8-1,2 o C/мин, выдерживают при этой температуре материал в течение 28-32 мин, затем нагревают до (175 2) o C со скоростью 1,8-2,2 o C/мин, выдерживают при этой температуре до получения отвержденного материала, причем в ходе нагрева и выдержки материала при данных температурах проводят постоянное измерение величин электропроводимости и тангенса угла диэлектрических потерь, а процесс отверждения завершают при достижении постоянных во времени значений указанных величин. Данное изобретение иллюстрируется следующими примерами. Пример 1. В печь со смотровым окном, нагреваемую по заданному режиму, помещают бюкс с 1 мл связующего ЭНФБ и электрофизическую ячейку в виде высокой стеклянной пробирки с вставленными в нее двумя медными электродами (диаметр рабочего электрода - 1 см), расстояние между электродами - 1 см), куда заливают связующее ЭНФБ в количестве 30 мл. Смотровое окно печи позволяет визуально наблюдать картину отверждения материала. Тонкий слой связующего в бюксе с открытой поверхностью позволяет имитировать слой связующего на стеклоткани, вид продукта между электродами электрофизической ячейки - толстый слой связующего в многослойных композитах или монолитных толстостенных изделиях. Бюкс и ячейку с образцом связующего ЭНФБ нагревают по режиму: со скоростью 1,0 o C/мин до 130 o C с выдержкой на этой температуре в течение 30 мин, со скоростью 2,0 o C/мин до температуры максимального отверждения 175 o C с выдержкой на этой температуре до достижения постоянных значений электропроводимости G, контролируя конец отверждения по достижении постоянных значений тангенса угла диэлектрических потерь (tg ). Продукт отверждения визуально однороден, монолитен, без воздушных включений и пор. Данные электрофизического анализа отверждения связующего ЭНФБ по данному режиму представлены в таблице 1. Как видно из данных таблицы, значения G и tg стабилизируются через 192 мин нагрева. Дальнейшее нагревание в течение 60 мин не изменило показаний электрофизических параметров, что говорит о полном протекании отверждения при 192 мин нагрева. Изменение электропроводимости от ее максимального значения 3,300 S (65 o C) в конце отверждения произошло на 3 порядка: 0,0036 S (175 o C), что говорит о глубоком отверждении материала и его высоких диэлектрических свойствах. Условия отверждения связующего ЭНФБ по этому режиму приведены в таблице 2, опыт 5. Аналогично этому примеру проведения оптимального режима отверждения связующего ЭНФБ проведена серия экспериментов проведения режима отверждения связующего ЭНФБ для обработки условий, не вызывающих визуальной порчи материала при наименьшем времени термообработки, т.е. оптимальная скорость V 1 подъема температуры до температуры изотермической ступеньки Т 1 , температура изотермы Т 1 , o C, время выдержки на ней 1 , скорость нагрева V 2 до температуры максимального отверждения температуры изотермы Т 2 . Из таблицы 2 видно, что однородный материал получается при минимальных граничных условиях термообработки (опыт 4): скорости V 1 = 0,8 o C/мин, Т 1 = 128 o C, 1 = 38 мин, V 2 = 1,8 o C/мин и при максимальных граничных условиях термообработки (табл. 2, опыт 6): скорости V 1 =1,2 o C/мин, T 1 =132 o C, 1 = 32 мин, V 2 = 2,2 o C/мин. Как видно из данных таблицы 2 (опыты 2, 3, 7-10), изменение V 1 на 0,05 o C/мин; температуры первой изотермы Т 1 на 3 o C; V 2 на 3 o C/мин и времени изотермы 1 на 3 мин вызывает образование воздушных включений и пор в связующем ЭНФБ. Нагрев со скоростью 0,5 o C/мин до Т 1 с выдержкой на ней в течение 30 минут и дальнейший подъем температуры со скоростью 2,0 o C/мин до температуры максимального отверждения дает однородный материал, но время отверждения затягивается. На основании вышеизложенного установлены следующие границы предельных значений условий отверждения: V 1 = 0,8-1,2 o C/мин, 1 = 28-32 мин, V 2 =1,8-2,2 o C/мин, Т 1 = 128-132 o C. Для удобства отсчета при дальнейшем проведении эксперимента были выбраны оптимальные параметры (табл. 2, опыт 5): V 1 = 1,0 o C/мин, Т 1 =130 o C, 1 = 30 мин, V 2 = 2,0 o C/мин. Пример 2. На основе связующего ЭНФБ (ТИ 59 1004-82) и углеродной ленты ЛУП-02 (ТУ 6-06-31-218-78) готовят заготовку препрега. Из углеленты вырезают полоску длиной 50 см и шириной 4 см. Полоску пропускают через пропиточную ванну со связующим ЭНФБ, соединяют с фторопластовой лентой такого же размера и пропускают через регулирующий отжимной валик (натяжение ленты 19 нм), после чего со скоростью 2,0 м/мин заготовка протягивалась через три зоны подсушки по лентотракту термостатируемой печи, температура которых составила 60-75-50 o C. Углелента, пропитанная связующим ЭНФБ плотностью 1,03 г/см 3 , исходной концентрации 55% и подсушенная в трехзонной печи, анализировалась на содержание связующего: содержание летучих в растворимой части, которые составляли, соответственно, мас.%: 36; 2,0; 95, затем тройным слоем наматывались на стеклянный стержень. На нее накладывался медный электрод, заложенный между двумя слоями стеклоткани Т-10-80 (ГОСТ 19170-73), пропитанной также ЭНФБ и подсушенной по тем же зонам 60-75-50 o C трехзонной печи. Затем, снова три слоя препрега на основе углеленты ЛУП-02 тройным слоем наматывались поверх медного электрода и стеклоткани Т-10-80. От медного электрода и от самого препрега на основе ЛУП-02 и ЭНФБ, составляющего собой электроизмерительную ячейку, протягивались провода в экранированной и фторопластовой оболочке для их подключения к измерителю типа Е-7-8. Стеклоткань Т-10-80 служила изолятором медного электрода от наполнителя-углеленты ЛУП-02, которая сама обладает высокой электропроводностью, что может исказить измерения электрофизических параметров при отверждении связующего или сделает их невозможными, если ее не изолировать. Обеспечить надежную изоляцию можно лишь с использованием не менее 2-х слоев стеклоткани Т-10-80. При более тонкой изоляции возможно замыкание между металлическим электродом и углелентой. Изготовленную ячейку помещают в середину печи, задают нагрев от комнатной температуры со скоростью 1,0 o C/мин до 130 o C, выдерживают на 130 o C в течение 30 мин, далее нагревают со скоростью 2,0 o C/мин до 175 o C и выдерживают на этой температуре до достижения сначала постоянных значений электропроводимости, а затем и тангенса угла диэлектрических потерь. Данные электрофизических измерений представлены в таблице 3. Как видно из данных таблицы 3, препрег на основе ЛУП-02 и ЭНФБ также отверждается на три порядка ниже по значениям электропроводимости от ее максимума, т.е. так же, как и само связующее: углепластик обладает высокими диэлектрическими свойствами. Однако, влияние наполнителя оказывается на времени отверждения, которое составляет 210 мин, т.е. на 18 мин больше времени отверждения чистого связующего ЭНФБ. Таким образом, введение неразрушающего электрофизического контроля позволяет точно определить время отверждения и выдержку его на температуре отверждения, не позволяя ни передерживать, ни недодерживать материал на температуре максимального отверждения, а следовательно, и получать изделия высокого качества. Образцы пластика исследовались на глубину отверждения методом экстракции в спирто-ацетоновой смеси (1: 2). Данные из трех параллелей показали устойчивую степень отверждения по массе препрега, которая составила 99%. Пластик после отверждения - монолитен, без расслоений. Пример 3. Для оценки режима отверждения композиционного материала на связующем ЭНФБ с другим наполнителем - стеклотканью Т-10-80, т.е. приемлемости режима в случае разных наполнителей, готовится образец препрега на основе Т-10-80 и ЭНФБ. Стеклоткань Т-10-80 в течение 1 ч прогревают в термопечи при 100 o C для удаления следов влаги. Затем стеклоткань пропитывают 10 мин в том же связующем ЭНФБ, подсушивают на воздухе в течение 10 мин, нарезают слоями 10х10 мм каждый, берут по 4 слоя для 3-х образцов. Один помещают между электродами прижимной ячейки с диаметром рабочего электрода 4 мм, два других подвешивают в свободном состоянии рядом с ячейкой в середине печи. Провода от ячейки подсоединяют к измерителю типа Е-7-8 и под контролем электрофизического метода проводят нагрев образцов по заданному режиму: от комнатной температуры со скоростью 1,0 o C/мин до 130 o C с выдержкой на 130 o C в течение 30 мин и далее, нагревая образцы со скоростью 2,0 o C/мин до 175 o C с выдержкой на этой температуре до достижения сначала постоянных значений электропроводимости, а затем тангенса угла диэлектрических потерь. Данные измерений электрофизических параметров представлены в таблице 4. Как видно из данных таблицы 4, полное отверждение пластика на основе Т-10-80 и ЭНФБ наступает через 196 мин прогрева по заданному режиму. Образец также проходит отверждение на три порядка ниже от максимального значения электропроводимости. Степень отверждения, измеряемая методом экстракции в спирто-ацетоне в аппарате Сокслета трех образцов, отвержденных по данному режиму, как и в опыте на примере 3, показала устойчивое значение 99%. Стеклопластик после отверждения также монолитен, без расслоений. Таким образом, способ получения отвержденного композиционного материала по изобретению, включающий двухступенчатый режим отверждения, позволяет независимо от условий загрузки, вида наполнителя, получать визуально однородные по объему полимерные материалы: стекло- или углепластики со стабильной степенью отверждения порядка 99%, а также сократить почти в два раза длительность отверждения при получении композиционного материала, что в свою очередь существенно сократит трудо-энергозатраты. При этом упрощается и технология получения КМ на основе ЭНФБ.
Формула изобретения
Способ отверждения композиционного материала на основе эпоксифенольного связующего марки ЭНФБ, включающий ступенчатое нагревание компонентов материала от комнатной температуры до максимальной температуры отверждения и выдержкой на ней до получения отвержденного материала, отличающийся тем, что вначале компоненты нагревают до Т 1 = 128 - 132 o C с скоростью V 1 = 0,8 - 1,2 o C/мин, выдерживают при Т 1 в течение 1 = 28 - 32 мин, после чего нагревают до максимальной температуры отверждения (175 1) o C со скоростью V 2 = 1,8 - 2,2 o C/мин, причем в ходе нагревания проводят постоянное измерение величин электропроводимости и тангенса угла диэлектрических потерь, а процесс отверждения завершают при достижении постоянных во времени значений указанных величин.
На обрабатываемую форму выкладывают волокнистый пропитанный материал (при необходимости может пропитываться и на форме). На него накладывают вакуумный мешок с металлическими патрубками, соединенными с резиновыми шлангами. Вакуум-насосами из герметичной полости, образованной между стеклопластиковой диафрагмой откачивают воздух, чтобы давление там было ниже, чем приложенное к диафрагме.
Благодаря образующемуся перепаду давления с разных сторон диафрагмы, она прижимается к формуемому изделию, уплотняя материал и придавая необходимую форму.
Затвердевание наблюдается при соединении вместе отдельных слоев стеклопластика. Уплотнение композиции приводит к устранению пустот и удалению избытка смолы.
При отвердевании изделий, получаемых формованием с эластичной диафрагмой, необходимо избегать образования пузырей, а также тщательно контролировать давление, температуру и массовое соотношение между волокном и смолой.
Схема формования:
а) положение до вакуума б) положение после вакуума
1 – форма
2 – вакуумный мешок
3 – пропитанный стеклонаполнитель
4 – металлический патрубок
5 – сальниковая прокладка
6 – зажимы
7 – отформованное изделие
5.4. Автоклавное формование. Компоненты. Операции. Оборудование.
Режимы.
1 – канал для соединения с атмосферой или вакуумом
2 – плита формы
3 – коллектор для отсоса воздуха из пакета
4 – уплотнение диафрагмы
5 – боковое выпускное отверстие
6 – эластичная перегородка
7, 8 – слой с вентиляционным отверстием
9 – диафрагма
10 – промежуточная плита
11 – перфорированный слой
12 – впитывающие слои
13 – разделительная ткань
14 – внешний слой
15 – слоистый армированный пластик
При автоклавном формовании для сжатия слоевого пакета во время отверждения поддерживается давление 0,35 – 0,7 МПа с одновременном нагревом горячими газами. Одновременно производится вакуумирование материала для удаления захваченного воздуха и летучих продуктов.
Вакуум обычно прикладывается на начальных стадиях циклах отверждения, в то время, как давление в автоклаве поддерживается на протяжении всего цикла нагрева и охлаждения. Вентиляционные отверстия, связанные с атмосферой или вакуумом предназначены для отвода летучих продуктов и захваченного воздуха из отверждающегося пакета армированного пластика. По сравнения с другими способами формования метод с помощью эластичной диафрагмы, автоклавный, позволяет получить изделия с более точной толщиной и меньшей пористостью.
Лекция 15.
5.5. Намотка. Компоненты. Операции. Оборудование. Режимы .
Намотка - метод переработки КМ в изделия, при которых наполнитель, предварительно
покрытый связующим (сухая намотка) либо пропитывается во время намотки (мокрая намотка) непрерывно подается под определенным углом на вращающуюся съемную оправку, которая после намотки помешается в термокамеру для отверждения изделия, после отверждения с помощью кабестана стаскивается с оправки.
Данный метод переработки КМ в изделия включает в себя двуосный способ, при котором каждый следующий спиральный слой накладывается ряд за рядом, перекрещивание волокон исключено.
Косой перекрестный , при котором при прохождении раскладчиком траверсы одного цикла нить укладываются в виде непрерывной спирали с изменением направления, на противоположных концах.
Круговой , при котором намотка происходит перпендикулярно оси вращения.
Одноосный способ, при котором дорожка нити делает полный ход по длине раскладчика, после чего следующий ложиться рядом с предыдущим.
Планетарный , при котором дорожка нити ложится в плоскости пересекающей поверхность намотки.
Предварительно пропитанный связующим волокнистый наполнитель протаскивается со скоростью 0,6 - 6,1 м/мин через формующее отверстие, обогреваемое фильерой определенной формы, где происходит уплотнение пучка волокнистого наполнителя.
Применяется для производства различных цилиндрических изделий из стеклопластика (труб, баков и др.). В настоящее время используют намотку пропитанных стеклотканей и холстов или стекложгутов и лент на оправку. Наиболее простым методом изготовления труб из стеклопластиков считается периодический метод намотки. Трубы изготавливают на специально намоточном или токарном станке, приспособленном для этих целей. Вначале процесса жгуты, нити, сетки, ткани или холсты разматывают с рулонов, пропитывают синтетическими связующими, а затем подают при равномерном натяжении на вращающуюся металлическую оправку, которая определяет внутренний диаметр изделия и его конфигурацию. Перед намоткой оправку предварительно обезжиривают, смазывают тонким слоем адгезионной смазкой, обматывают целлофаном. На рисунке показана схема изготовления цилиндрического изделия большой длины из нитей или жгутов с одновременной пропиткой во время намотки.
1 -подвижный стол
2 -шпули нитей или жгутов
4 - пропиточная ванна
5 - жидкое связующее, не содержащее растворителя
6 - отжимные валики
7 - винт для передвижения стола
8 - оправка
9 - привод на оправку
10 - изделие
11 - шпулярник.
В соответствии с. этой схемой шпули нитей и жгутов вставляются в шпулярник, расположенный на подвижном столе этот стол с помощью винта 7 или тяги во время намотки способен передвигаться туда и обратно, вдоль наматываемого изделия. Со шпулярника нити собираются в пучок, этот пучок проходит через пропиточную ванну 4 наполненную жидким связующим без растворителя, затем между отжимными валиками 6, служащих для удаления избытка связующего. Пропитанный пучок, во время хода стола, наматывается под некоторым углом на оправку 8 имеющую привод 9 для вращения. После того, как намотан один слой пропитанного наполнителя на всю длину изделия, ход стола переключается на обратный. И под противоположным углом производится намотка следующего слоя, в результате получается перекрестное слоевое расположение нитей
После получения изделия с нужной толщиной стенки, оно снимается со станка и помещается в печь для отверждения связующего проникшего в поры наполнителя во время пропитки и намотки. Поскольку связующее проникло в поры наполнителя за счет капиллярных сил, то при выборе нитей и их степенью крутки следует учитывать возможные неблагоприятные влияния усадочных явлений возникающих при отверждении связующего.
Для повышения качества изделий используют способ ваку-умно-автоклавного формования. Процесс формования осуществляется под действием высоких давлений сжатых газов или жидкости на формуемое изделие, вакуумируемое на форме
Рис. 2.13. Схема формования в автоклавах и гидроклавах:
/ - автоклав; 2 - резиновый чехол; 3 - формуемое изделие; 4 - форма; 5 -
плита; 6 - прижимное устройство; 7 - тележка; 8 - винтовой зажим
Ластичным мешком и помещенное в автоклав. Схема вакуум -по-автоклавного формования показана на рис. 2.13.
Автоклавы являются наиболее универсальным оборудованием при изготовлении изделий из композитов. Автоклав - герметичный сосуд большого объема, в котором можно создавать значительные избыточные давления рабочего тела (воздуха, инертного газа, азота) в диапазоне от 1 до 3,0 МПа при температурах 150...380 °С. Характеристики автоклавов, применяемых в отечественной промышленности, представлены в табл. 2.4.
Таблица 2.4 Технические характеристики автоклавов
Автоклав включает в себя системы подачи рабочего тела в камеру, разогрева до требуемой температуры, регулирования рабочего давления, вакуумную, аварийную для сброса давления, систему автоматизированной записи параметров, а также противопожарную систему (рис. 2.14).
Наличие теплоизоляции корпуса позволяет в процессе работы избежать его разогрева, обеспечивает необходимый запас прочности стенок и нормальную температуру производственных помещений. Температуру в автоклаве повышают после откачки воздуха и заполнения его рабочим телом. Давление в автоклаве снижают только при охлаждении изделия до температуры 60...70 °С. Автоклав охлаждается за счет принудительного теплообмена рабочего тела и водяного теплообменника. Температуру отверждаемого изделия измеряют в необходимых точках с помощью хромель-копелевых термопар. Для равномерной передачи необходимого давления на формуемый пакет
2.4. Формование с эластичной диафрагмой
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
материала используют вакуумные мешки, герметично закрывающие формуемое изделие на оправке и соединенные вакуумной системой автоклава.
Рис. 2.14. Схема автоклава:
/ - теплоизолирующий тепловой корпус; 2 - электронагреватель; 3 - крышка загрузочного люка; 4 - рельсовый путь; 5 - формуемое изделие; 6 - вакуумный мешок; 7 - вакуумная система; 8 - ресивер с азотом; 9 - азотная станция; 10 - вентилятор системы теплообмена; 11 - теплообменник
Процесс вакуумно-автоклавного формования (схема подготовки формы, порядок укладки слоев пакета заготовки, герметизация формы) во многом сходен с вакуумным формованием.
Автоклавный способ формования применяют для изготовления конструкций любой формы и габаритов (если позволяют размеры автоклава и не происходит разрушения эластичной диафрагмы под действием внешнего давления).
Вакуумно-пресс-камерное формование
Этот способ основан на передаче давления прессования воздуха через эластичную диафрагму к заготовке, уложенной на жесткую матрицу-форму. Внутренняя поверхность изделия оформляется матрицей, а внешняя - резиновым мешком и цулагой (рис. 2.15). Укладку пакета из ПКМ на форму осуществляют вручную с помощью приемов, описанных выше.
Эластичный мешок закрепляют на основании формы, при этом образуется герметично замкнутый объем. Цулагу жестко скрепляют с формой накидными прижимами. Прессование
осуществляется при подаче в мешок сжатого воздуха. Под давлением мешок растягивается в камере и плотно прижимается с одной стороны к уложенной на форме заготовке, а с другой стороны - к поверхности цулаги. После чего матрицу подвергают нагреву, и изделие отверждается. Режимы термообработки и прессования определяются свойствами компонентов ПКМ, конструкцией и габаритами изделия. Обычно давление прессования в камере не превышает 0,5 МПа. Во избежание изменения формы готовое изделие охлаждают под давлением, а затем снимают с формы.
Из-за разности давлений внутри эластичного мешка и окружающего воздуха форма испытывает значительные нагрузки. Поэтому формы для пневматического формования делают более прочными и жесткими, чем при вакуумном формовании.
Этим способом можно формовать практически любые волокнистые и слоистые материалы.
2.5. Особенности конструирования деталей с учетом
технологии контактного формования и формования
с эластичной диафрагмой
Может показаться, что изменить конфигурацию или толщину нового изделия достаточно просто. Однако при формовании деталей в открытой форме эти изменения необходимо осуществлять с учетом всех возможных последствий.
1. Перед формованием детали материал необходимо уложить в форму строго в соответствии с ее очертанием. При наличии острых углов (угол 90° без закруглений) маты не закрывают всю поверхность формы, и за наружным смоляным слоем около углов образуются пузырьки воздуха. При наличии
2.5. Особенности конструирования деталей
внутренних прямых углов, выполненных без закруглений, материал не будет прилегать к поверхности формы. Если же форма имеет наружные прямые углы, КМ также не сможет их плотно охватить.
Для предотвращения этих явлений рекомендуется закруглять внутренние и наружные углы по радиусу 3,00... 10,00 мм. В этом случае КМ будет полнее следовать очертанию формы, т.е. драпируемость будет лучше. Места резких переходов поверхности являются зонами концентрации высоких напряжений, где может происходить расслоение и растрескивание материала. Очевидно, что в конструкциях следует избегать таких мест и предусматривать самоупрочняющиеся переходные участки умеренного изгиба.
2. Для изменения толщины изделия, формуемого в открытой форме, следует увеличить (или уменьшить) число слоев материала. При необходимости резких изменений слои следует тщательно укладывать точно в соответствии с очертанием формы, что, однако, увеличивает затраты на ручной труд. В местах утолщений происходит концентрация напряжений и, как следствие, расслоение материала. Поэтому надо избегать появления таких высоконапряженных зон. С этой целью рекомендуется толщину изделия изменять постепенно, укладывая слои материала ступенчато или как кровельную черепицу.
3. Наиболее удобным для формования следует считать круглое отверстие; самым неудобным - отверстие с острыми незакругленными углами. Для предотвращения роста напряжений рекомендуется увеличивать радиусы закруглений в углах, а толщину изделия в острых углах увеличивать постепенно или предусматривать фланцы вокруг отверстий.
4. Изделия из ПКМ часто получают соединением нескольких отдельных деталей. Поэтому в зависимости от прочности (от большей к меньшей) следует различать соединения: нахлес-точные, работающие на сдвиг; стыковые; косые нахлесточные, работающие на раздир (на расслаивание).
Нахлесточные соединения являются самыми легкими и широко используемыми при изготовлении деталей из ПКМ (рис. 2.16, а). Их форма и особенности нагружения (на сдвиг) предполагают применение клеев, что обеспечивает максимальную прочность соединения. Разрушение нахлесточного соеди-
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
нения под действием напряжений сдвига происходит тогда, когда при возрастании нагрузки оно начинает работать на раздир.
При увеличении нагрузки происходит поворот места соединения, при этом действующие силы располагаются на одной оси (см. рис. 2.16, а). Этот поворот приводит к изгибанию материала и расслаиванию его на концах нахлеста. Если нагрузки продолжают расти, расслаивающие напряжения могут превысить адгезионную прочность, и соединение быстро разрушится. Однако если края нахлеста скошены, жесткость конструкции уменьшается и в результате повышается прочность соединения без увеличения площади его поверхности. Более того, при надлежащей подготовке материалов можно получить еще более высокие значения прочности при той же поверхности сдвига, выполнив соединение деталей вскос ("в ус") (см. рис.2.16, б).
Рис. 2.16. Примеры технологических соединений при склеивании
материалов:
а - нахлестанное; б - вскос (в "ус"); в - стыковое: 1 - слой клея;
2, 3 - жесткие материалы; 4 - промежуточный слой
Стыковое соединение со слоем клея и промежуточными слоями используют при склеивании жестких материалов, оно работает только на растяжение (рис. 2.16, в). Прочность его обычно колеблется от низких до средних значений, и ее легко
Соединение, работающее на раздир, представляет собой конструкцию, в которой напряжения концентрируются вдоль линии, по которой один склеиваемый материал отгибается от другого, в результате чего в материалах возникают неуравновешенные растягивающие напряжения (см. рис. 2.16, в). В таком соединении под нагрузкой оказывается только тот участок клеевого шва, который находится в точке расслаивания, а остальные участки шва остаются ненагруженными до тех пор, пока до них не дойдет зона расслаивания.
5. Минимальный угол технологического уклона должен составлять 2° (нулевой уклон - только в разъемных формах). Поднутрения не желательны, допускаются только в разъемных и резиновых формах.
6. Минимальную реальную толщину изделий при формовании ручной укладкой слоев следует задавать 0,8 мм, при напылении - 1,5 мм. Максимальная реальная толщина, в принципе, не ограничивается, но с учетом отверждения должна составлять 8... 10 мм. Стандартная разнотолщинность: при формовании ручной укладкой слоев - от +0,8 до -0,4 мм и при напылении - от +0,64 до -0,64 мм. Максимальное увеличение толщины не ограничивается.
2.6. Формообразование да
1. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Пропитка под давлением
Сущность этого метода формования заключается в том, что связующее подают под давлением к нижнему отверстию формы и постепенно оно заполняет пространство между матрицей и пуансоном, вытесняя воздух из материала, уложенного на матрицу (рис. 2.17).
Рис. 2.17. Схема пропитки пакета материала под давлением:
/ - пуансон; 2 - пакет материала; 3 - матрица; 4 ~ бачок со связующим;
5 - установка для подогрева органического теплоносителя; 6 - компрессор
Способность смолы растекаться в замкнутом объеме формы под действием давления используют для изготовления изделий с простой симметричной формой. Этот способ формообразования позволяет получать конструкции с высокой точностью геометрических размеров, постоянной плотностью по объему материала стенки, при этом стенка драктически не будет иметь пустот или местных расслоений. Такие требования необходимо выполнять, например, при изготовлении различных типов обтекателей ЛА. В этой области метод и получил наиболее широкое применение.
Способ изготовления форм для пропитки отличается от способа изготовления форм для контактного формования, он более трудоемкий, поскольку требуется обеспечить с высокой точностью зазор между матрицей и пуансоном, равный толщине стенки изделия. Поэтому для изготовления металлических и неметаллических форм, применяют модель из того же материала и с такой же толщиной стенок, как и у изделия. Эту модель обычно формуют на гипсовой оправке, и она является точным объемным макетом поверхности изделия. Одновременно модель служит технологической оснасткой для изготовления нижней части формы (матрицы) и верхней части (пуансона).
2.6. Формообразование давлением
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Толщины стенок матрицы и пуансона для конкретного изделия определяют экспериментальным путем.
Подготока поверхностей матрицы и пуансона заключается в нанесении антиадгезивных смазок или разделительных пленок так же, как и в случае контактного формования. Сухой армирующий материал выкладывают на матрицу до закрытия ее верхней частью формы и свинчивания.
Перед пропиткой материал, уложенный между позитивной и негативной формами, следует высушить. Для сушки через форму пропускают поток горячего воздуха, подаваемый от калорифера. В некоторых случаях для малогабаритных изделий осуществляют "промывку" армирующего материала той же смолой, которая входит в состав связующего. Таким образом удаляют пузырьки воздуха из материала и тем самым устраняют опасность образования в изделии незаполненных смолой участков. Однако для крупногабаритных изделий операция "промывки" экономически не выгодна.
Давление связующего в процессе пропитки, воздействуя на стенки матрицы и пуансона, расширяет зазор между ними и способствует равномерному заполнению связующим армирующего материала. Поэтому в данном случае небольшая неравномерность при укладке материала на матрицу не имеет существенного значения. Скорость подъема связующего по форме ограничена условиями качественной пропитки. Если эту скорость превысить, то связующее зальет воздушные пузырьки до того, как они отделятся от волокна. Тогда пузырьки можно удалить только путем "промывки" новой порцией чистой смолы; такая промывка настолька длительна, что полностью обесценивает все другие преимущества процесса.
Для качественной пропитки следует регулировать и контролировать температуру, вязкость и скорость, с которой поднимается связующее.
После того, как связующее появляется в выводных отверстиях в верхней части формы, подачу связующего прекращают, и с целью ускорения процесса отверждения форму начинают обогревать. В некоторых случаях пропитку материала осуществляют в уже разогретой форме, для чего используют соответствующие обогревательные устройства. Иногда в качестве нагревателя используют медную проволоку, обмотанную вокруг
формы. В ряде случаев отверждение изделий проводят в печах, в которые помещают форму. Параметры отверждения определяются типом применяемого связующего.
В том случае, когда требуется обеспечить высокую производительность процесса, применяют короткие рубленые волокна (50...70 мм), предварительно отформованные по форме изделия. Однако в этом случае невозможно получить высокопрочный материал.
Пропитка в вакууме
Процесс формования изделий пропиткой в вакууме (технология подготовки формы, укладки материала заготовки) аналогичен процессу формования пропиткой под давлением. Схема вакуумной пропитки показана на рис. 2.18.
Рис. 2.18. Схема формования:
/ - связующее; 2 - запорное устройство; 3 - пуансон; 4 - смотровое стекло; 5 - вакуумная система; 6 - бачок для излишков связующего; 7 - заготовка; 8 - матрица; 9 - канал для прохождения связующего; 10 - эластичная прокладка
При использовании вакуума элементы формы должны быть достаточно жесткими для предотвращения сдавливания армирующего материала и нарушения свободного протекания смолы при возможном сплющивании матрицы или пуансона. Если
материал *по форме расположен неравномерно, то через некоторые уплотненные участки смола проходить не будет, и эти участки останутся непропитанными. По мере приближения смолы к верхнему выводному отверстию необходимо для обеспечения дальнейшего ее движения увеличивать вакуум.
2.7. Формообразование прессованием в формах
В общем случае метод формования изделий прессованием -это процесс, при котором материал в пресс-форме принимает заданную конфигурацию, определяемую матрицей и пуансоном, причем отверждение его происходит в форме.
В настоящее время около 50 % всех изделий из армированных пластмасс получают этим методом. Его применяют в том случае, когда требуются высокая производительность, точность и воспроизводимость деталей. При этом достигается высокое качество изделий при минимальной стоимости. Но даже если объем производства невелик, например при получении деталей аэрокосмических аппаратов и других изделий с высокими эксплуатационными свойствами, требования к точности и воспроизводимости деталей заставляют использовать методы формования в пресс-формах.
Для всех случаев формования используют пресс-формы. Форма или комплект формующих деталей обычно состоит из двух основных частей: матрицы и пуансона, причем одна из них входит в другую при смыкании формы с соблюдением заданного зазора между ними, равного толщине формуемой детали.
В зависимости от применяемого армирующего материала, конструкции формы, способа загрузки материала в форму различают три основных метода формообразования изделий из ПКМ: прямое прессование; литьевое прессование; термокомпрессионное прессование. Особенности технологии изготовления деталей этими методами описаны ниже.
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Прямое прессование
Этот метод прессования является одним из наиболее распространенных в производстве изделий прессованием. Метод прямого прессования армированных композиций несущественно отличается от формования пластмасс. Главное различие заключается в природе самого материала, из которого прессуется деталь. Вместо свободно текущих смол или порошков на формование поступает липкая волокнистая масса, таблетиро-ванные ПКМ, пропитанные маты, ткани или предварительно отформованные заготовки из ПКМ либо премиксы.
Премикс - армированная волокном термореактивная композиция, которая после получения не нуждается в дальнейшем отверждении и может быть отформована при приложении давления, достаточного только для течения и уплотнения материала.
Для прессования изделий из ПКМ в большинстве случаев применяют гидравлические прессы, так как они обеспечивают постоянное давление на прессуемую деталь в течение всего времени прессования и, кроме того, они проще и надежней в эксплуатации, чем механические прессы. Гидравлические прессы приводятся в действие давлением жидкости (воды или масла), подаваемой насосом в цилиндр пресса.
Обычно используют гидравлические прессы с одним рабочим цилиндром (с нижним или верхним расположением) или с двумя рабочими цилиндрами (вертикальные и угловые).
На рис. 2.19 показана схема устройства гидравлического пресса с нижним расположением рабочего цилиндра.
Верхняя плита и станина пресса, связанные между собой колон-
2.7. Формообразование прессованием в формах
нами, воспринимают усилие пресса, развиваемое плунжером рабочего цилиндра. Установленная на нижнюю подвижную плиту пресс-форма с загруженным в нее материалом при подъеме плунжера прижимается к верхней неподвижной плите, и материал в пресс-форме подвергается прессованию. При прекращении подачи воды в рабочий цилиндр и сообщении его со сливной магистралью плунжер пресса и подвижная плита силой своего веса вытесняют жидкость из рабочего цилиндра и опускаются.
Прессы с нижним давлением чаще всего используют для прессования изделий в съемных пресс-формах. Такие прессы иногда имеют промежуточные подвижные плиты, которые называют этажными.
Для нагревания съемных пресс-форм на нижней подвижной плите и верхней неподвижной плите пресса закрепляют обогревательные плиты, изолированные с опорной поверхности теплоизоляционными прокладками. Промежуточные подвижные плиты этажных прессов также имеют обогрев.
Прессы с верхним расположением рабочего цилиндра, т.е. прессы с верхним давлением (рис. 2.20), применяют главным образом для прямого прессования деталей из ПКМ в стационарных пресс-формах. Отличие этих прессов от прессов с нижним рабочим давлением состоит в том, что они имеют вспомогательные цилиндры обратного хода (ретурные цилиндры) и цилиндр выталкивателя, закрепленные на нижней неподвижной плите. Ретурные цилиндры служат для подъема подвижных рабочих частей пресса - верхней подвижной плиты и плунжера. Цилиндр выталкивателя обеспечивает извлечение отпрессованных деталей из пресс-формы. Прессы с верхним расположением рабочего цилиндра, как правило, бывают только одноэтажные.
Основным элементом технологического оснащения процесса прессования является пресс-форма, сложность и стоимость которой определяют качество и себестоимость изделий.
Пресс-формы в соответствии с методом прессования подразделяют на пресс-формы для обычного прессования (компрессионные) и литьевые для литьевого прессования; согласно характеру эксплуатации - на съемные, полусъемные и стационарные в зависимости от числа оформляющих гнезд (числа
одновременно прессуемых деталей) - на одногнездовые и многогнездовые.
В соответствии с принципом устройства оформляющего гнезда пресс-формы для прямого прессования подразделяют на открытые, полузакрытые и закрытые пресс-формы.
Рис. 2.20. Схема устройства гидравлического пресса с верхним расположением рабочего цилиндра: 1 - станина (нижняя подвижная плита или рабочий стол); 2 - колонна; 3 - верхняя неподвижная плита (головка); 4 - рабочий цилиндр; 5-плунжер; 6 - верхняя подвижная плита; 7- упоры; 8 - пазы в верхней подвижной и нижней неподвижной плитах для закрепления пресс-формы; 9 - выталкиватель; 10 - цилиндры обратного хода (ретурные цилиндры); // -опорные рамы; 12- цилиндр выталкивателя
Пресс-формы открытого типа (рис. 2.21). Такие пресс-формы не имеют загрузочной камеры, уплотнение прессуемого в них материала достигается за счет трения, которое возникает при вытекании материала из оформляющего гнезда через зазор между пуансоном и матрицей. Поэтому для прессования в открытой пресс-форме необходим значительный избыток материала (до 10...15 %).
2.7. Формообразование прессованием в формах
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
изменяется по мере уменьшения зазора между пуансоном и матрицей и зависит от свойств материала, то применение открытых пресс-форм для прессования изделий из термореактивных пластических масс возможно только в случае прессования несложных изделий с небольшой высотой вертикальных стенок. Детали, отпрессованные в открытых пресс-формах, имеют низкую точность по высоте.
Пресс-формы полузакрытого типа, или пресс-формы с перетеканием (рис. 2.22). В них, как и в пресс-формах открытого типа, необходимое уплотнение достигается за счет трения, возникающего при вытекании материала из оформляющего гнезда. Однако зазор, через который вытекает материал, регламентирован и остается практически постоянным в течение всего процесса формования. Такие пресс-формы обеспечивают большую степень уплотнения прессуемого материала, чем пресс-формы открытого типа, что позволяет оформлять в них сложные детали. В полузакрытых пресс-формах матрицы имеют
надпрессовочное пространство - загрузочную камеру, являющуюся продолжением оформляющего гнезда.
Загрузочная камера служит для того, чтобы поместить в нее навеску пресс-материала. Для прессования в полузакрытых пресс-формах необходим меньший избыток материала, чем при прессовании в открытых пресс-формах.
Полузакрытые пресс-формы применяют главным образом для прессования изделий из пластических масс.
Рис. 2.23. Схема пресс-формы закрытого типа; 1 - пуансон; 2 - матрица |
Закрытые (поршневые) пресс-формы (рис. 2.23). Характерно, что во время прессования материал практически не вытекает из оформляющего гнезда. Очертания пуансона таких пресс-форм в плане точно соответствуют очертаниям изделия. Это усложняет изготовление пресс-форм и обусловливает их сравнительно низкую эксплуатационную стойкость. Однако в таких пресс-формах достигается большее уплотнение материала при постоянном давлении на него со стороны пуансона в течение всего времени прессования. При прессовании в закрытых пресс-формах необходимо точно выбрать навеску прессуемого материала. Для промышленного производства в основном применяют металлические пресс-формы, изготовленные из износостойкой закаленной стали типа 4X13, У8А, ХВГ, 12ХНЗА, У10А и других.
Качество поверхности пресс-форм для изготовления армированных композиций необязательно должно быть высоким. Наличие наполнителей накладывает определенные ограничения на шероховатость и глянец прессованного изделия независимо от качества полированной поверхности формы. Тем не менее для защиты формы от коррозии, лучшего отделения готовых изделий, удаления следов инструментов от механической обработки ее поверхность желательно хромировать (толщина покрытия 10...25 мкм).
Для проведения опытных запрессовок или для прессования нескольких изделий возможно использование деревянных, пластмассовых или гипсовых форм. При небольших давлениях прессования формы можно изготавливать из цветных сплавов
2.7. Формообразование прессованием в формах
методом литья, но они имеют короткий срок службы, хотя и более дешевы, чем стальные.
Стадия извлечения изделий из формы является самой критической в процессе формования. Для облегчения этой операции, во-первых, необходимо на этапе разработки конструкции учитывать технологию ее изготовления, а во-вторых, применять антиадгезионные смазки или разделительные материалы, которые препятствуют прилипанию изделия к поверхности формы.
Материалы, употребляемые в качестве антиадгезивов, можно подразделить на два типа:
пленочные материалы или растворы, образующие защитную пленку;
жидкие или твердые вещества, размягчающиеся при температуре прессования и не образующие непрерывной пленки.
К первой группе относятся растворы поливинилового спирта в воде, растворы альгината натрия, целлофан, лавсан, фторопласт и другие материалы. Во всех случаях пленка оказывает влияние на образование дефектов поверхности отформованного изделия.
Вторую группу составляют смазывающие пленки, более удобные для нанесения на оснастку: воск, парафин, кремний-органические смазки (типа К-21), нефтяные остатки и т.п.
При выборе антиадгезивов необходимо учитывать температуру формования и воздействие их на связующее формуемого изделия.
Основными параметрами процессов прессования являются температура, давление, время.
Полуфабрикат в процессе формования необходимо нагревать до определенной температуры, чтобы придать ему требуемую пластичность, т.е. способность к формообразованию. Для термореактивных ПКМ нагревание необходимо также и для отверждения. Однако возможность повышения температуры формования всегда ограничена температурой деструкции и разложением связующих. Нагрев и охлаждение крупногабаритных изделий осуществляется нагревателями, расположенными в пресс-формах. В других случаях нагревательные устройства могут быть расположены как в самих пресс-формах, так и вне - в верхней и нижней плитах пресса. Время отверждения изделий
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
должно быть всегда больше времени, необходимого для заполнения материалом данной пресс-формы.
В процессе формования давление необходимо для уплотнения разогретого пластичного материала и придания ему конфигурации изделия. Давление на материал должно оказываться в течение всего времени, пока отформованное изделие не потеряет пластичность и не станет твердым в результате нагрева (для термореактивных композиций) или в результате охлаждения (для композиций на основе термопластов).
Время процесса определяется скоростью разогрева материала до пластического состояния и, главным образом, скоростью отверждения или скоростью охлаждения.
Указанные три основные параметра процесса формования - температура, давление, время - взаимосвязаны. Изменение одного параметра влечет за собой изменение других. Например, повышение температуры формования термопластов улучшает их пластичность и, следовательно, уменьшает необходимое давление и длительность формования.
Основные параметры процесса определяют в каждом конкретном случае в зависимости от компонентов ПКМ, схемы армирования композита, геометрии и формы изделия и отрабатывают опытным путем.
Прямое прессование (рис. 2.24) заключается в том, что тот или иной прессовочный материал помещают в матрицу, нагретую до температуры формования, на который действует давление Р верхней половины пресс-формы - пуансона, нагретой до такой же температуры. Под воздействием температуры материал приобретает необходимую пластичность и под давлением распределяется по оформляющей
2.7. Формообразование прессованием в формах
полости, заполняя ее. Полное закрытие формы (замыкание) происходит в момент окончательного оформления детали. Замыкание пресс-формы осуществляется с малой скоростью, чтобы воздушные включения были вытеснены из полости. Отформованное изделие выдерживают в пресс-форме под давлением в течение некоторого времени, необходимого для охлаждения термопластичного композита или нагрева термореактивного материала, после чего пресс-форму открывают, и изделие извлекают с помощью выталкивателя с усилием р в.
При неправильном выборе режимов прессования или некачественных материалах в изделиях могут появиться следующие дефекты: пузырьки воздуха вокруг выступающих участков на поверхности детали; места, содержащие недостаточное количество связующего из-за избытка армирующего наполнителя; растрескивание связующего и места, содержащие его избыток; матовая поверхность и пятна на изделии.
Каждый дефект имеет свои причины возникновения; рекомендации по их устранению обычно отражают в таком документе, как технологический регламент.
Рассмотрим особенности прямого прессования.
а. При оформлении детали можно запрессовать в нее раз
нообразную арматуру (винты, гайки, стержни и т.п.), которая
будет прочно удерживаться в детали.
б. Прогревание материала происходит постепенно от сте
нок нагретой пресс-формы вглубь, и, следовательно, в про
цессе формования изделия различные слои материала могут
иметь разную температуру.
в. Разность температуры по толщине изделия приводит к
образованию внутренних напряжений и дефектов в результате
неравномерного протекания процесса отверждения или вулка
низации.
г. Имеется опасность повреждения тонких и малопроч
ных оформляющих элементов пресс-формы или впрессо
вываемой в деталь арматуры, так как материал под давле
нием начинает заполнять оформляющую полость еще до
того момента, когда он весь прогреется и приобретет до
статочную пластичность. Для устранения этой опасности в
большинстве случаев программируют режим давления и
применяют несколько предварительных подпрессовок.
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Кроме того, с помощью подпрессовки удаляют летучие и пары Влаги за короткий промежуток времени начальной стадии от-перждения материала.
д. На отформованных изделиях всегда образуются заусенцы (грат) в плоскости разъема пресс-формы.
Методом прямого прессования можно изготавливать изделия из любых материалов, как термопластичных, так и термореактивных. Практически этот метод применяют главным образом для изготовления деталей из термореактивных КМ. Использование его для формования деталей из термопластов нецелесообразно, так как в этом случае необходимо попеременно нагревать и охлаждать пресс-форму в течение каждого цикла формования, а это в значительной степени увеличивает длительность процесса.
Примерные режимы прямого прессования деталей, на которые ориентируются при отработке процесса формования, приведены в табл. 2.5.
Таблица 2.5 Примерные режимы прямого прессования
Различные методы пропитки армирующего материала и режимы прессования позволяют получить содержание наполнителя в композите от 20 до 50 %.
Литьевое прессование
Литьевое прессование заключается в том, что прессуемый материал загружают в загрузочную камеру предварительно замкнутой пресс-формы (рис. 2.25). Нагреваясь от стенок загрузочной камеры и приобретая при этом необходимую пластичность, материал под давлением литьевого пуансона поступает через литниковый канал в оформляющую полость пресс-формы
2.7. Формообразование прессованием в формах
и заполняет ее. После выдержки, необходимой для затвердевания, пресс-форму раскрывают и извлекают готовое изделие вместе с литниковым остатком.
Рис. 2.25. Схема пресс-формы для литьевого прессования на прессах с одним рабочим цилиндром:
1 - коническая обойма матрицы; 2 - клиновая матрица; 3 - загрузочная камера; 4- литьевой пуансон; 5 - отформованное изделие; 6- выталкиватель; 7 - литниковый канал
Особенности литьевого прессования состоят в следующем:
а) можно изготавливать детали с малопрочной или сквозной
арматурой и детали с глубокими отверстиями малого диаметра,
так как материал поступает в оформляющую полость пресс-
формы уже в пластичном состоянии и не в состоянии оказать
на оформляющие элементы пресс-формы и впрессовываемую
арматуру значительных сил деформации;
б) процесс формования материала протекает быстрее, чем
при обычном прессовании;
в) в деталях, полученных литьевым прессованием, не воз
никают большие внутренние напряжения вследствие меньшего
перепада температур по толщине стенок детали;
г) на деталях, изготовленных литьевым прессованием, прак
тически не остается фата, так как оформляющая полость
пресс-формы, образуемая пуансоном и матрицей, плотно за
мыкается еще до заполнения ее материалом. Точность соблю
дения размеров деталей при этом методе высокая, а механи-
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
ческая доработка деталей сводится только к отрезке литников и зачистке мест сраза;
д) при литьевом прессовании расходуется больше материа
ла, чем при прямом прессовании, так как материал заполняет
литниковые каналы и в зафузочной камере запрессовывается
его остаток;
е) пресс-формы для литьевого прессования сложнее и до
роже пресс-форм для прямого прессования.
Методом литьевого прессования можно изготавливать изделия из резиновых смесей и порошкообразных пластических масс. Пластмассы с волокнистыми наполнителями теряют до 50 % своей прочности. Слоистые пластики перерабатывать литьевым методом нельзя, так как материал не в состоянии пройти из загрузочной камеры пресс-формы в ее оформляющую полость через узкие литниковые каналы.
Пресс-формы для литьевого прессования отличаются от пресс-форм прямого прессования тем, что они имеют зафу-зочную камеру для прессуемого материала, отделенную от оформляющего гнезда и связанную с ним литниковыми каналами. Оформляющее гнездо литьевой пресс-формы перед прессованием закрывают, а материал в него поступает уже в пластичном состоянии из зафузочной камеры по литникам.
Существует два принципиально различных конструктивных варианта литьевых пресс-форм - литьевые пресс-формы для прессования на специальных прессах с двумя рабочими цилиндрами (рис. 2.26) и литьевые пресс-формы для прессования на обычных прессах с одним рабочим цилиндром (см. рис. 2.25).
Для прессования детали в пресс-форме материал зафужают в загрузочную камеру, затем верхнюю половину пресс-формы опускают на нижнюю и удерживают под давлением плунжера верхнего рабочего цилиндра пресса, чтобы пресс-форма не раскрылась при заполнении материалом. Под действием давления нижнего рабочего плунжера пресса поднимается литьевой пуансон и выдавливает материал из загрузочной камеры по литникам в оформляющую полость. После окончания прессования пресс-форму открывают и изделия выталкивают дополнительным ходом литьевого пуансона.
Метод позволяет развивать давления прессования до 35... 150 МПа для деталей из термопластов и термореактоплас-
2.7. Формообразование прессованием в формах |
Термокомпрессионное прессование С увеличением размеров или усложнением конфигурации и конструкции изделий из термопластичных композиционных материалов резко возрастают трудности по обеспечению требуемого качества, так как возможности традиционных методов формования и соответствующей технологической оснастки ограничены. Жесткие пресс-формы с увеличением габаритных размеров изделия становятся не рентабельными, повышаются их стоимость и трудоемкость изготовления, кроме того, зачастую отсутствуют прессы со столами необходимых размеров. Процесс формования с помощью эластичных мембран при температурах свыше 180 °С затруднен за счет их недостаточной надежности, ограниченного числа циклов формования (как правило, 1-3 цикла) и, как следствие, увеличения брака. По |
Усилие замыкания
Рис. 2.26. Схема пресс-формы для литьевого прессования на прессах с двумя рабочими цилиндрами:
/ - литьевой пуансон; 2 - загрузочная камера; 3 - плоскость разъема; 4 - изделие; 5 - литниковые каналы; 6, 7 - верхняя и нижняя части матрицы
тов соответственно и получать более сложные и точные по конфигурации детали. Этому способствует и более высокая, по сравнению с прямым прессованием, температура нагрева, снижающая вязкость материала и ускоряющая время формования.
Режим течения размягченного материала через литниковый канал матрицы не только приближает этот процесс к литью, но и способствует более однородному прогреву материала и снижению тем самым уровня остаточных внутренних напряжений в стенках детали. К недостаткам метода можно отнести небольшие размеры формуемых деталей, сложность изготовления матриц и меньший коэффициент использования материала, чем при прямом прессовании.
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
этим причинам большой интерес представляет термокомпрессионный метод формования изделий из ТКМ.
Технологическая оснастка для осуществления этого метода (рис. 2.27) состоит из ограничительной части, изготавливаемой, например, из металлов и эластичного формующего элемента (ЭФЭ),
характеризуемого КЛТР в диапазоне (250...500) 10~ 6 °С -1 . Собранный пакет формуется в ограничительной части оснастки за счет температурного расширения ЭФЭ при нагревании. Вследствие значительного различия КЛТР материалов ограничительной части оснастки (10...25) 10 °С -1 и ЭФЭ возникает давление формования, под действием которого пакет из ТКМ уплотняется. Если ЭФЭ вставлен в ограничительную часть оснастки с некоторым начальным зазором 5, то нагревание оснастки до определенной температуры сопровождается нарастанием давления р, которое можно рассчитать, используя формулу
Р = k p ∆T.
Здесь k - коэффициент термокомпрессии материала ЭФЭ, характеризующий прирост давления внутри замкнутого объема, в котором находится ЭФЭ, при его нагреве на 1 °С, МПа/°С:
k p =αE/(1-2μ)
где а, Е , ц - КЛТР, модуль упругости и коэффициент Пуассона материала ЭФЭ; ∆ T - разность между текущей температурой Т и температурой T δ , при которой исчезает зазор между
ЭФЭ и ограничительной частью оснастки.
Если считать ограничительную часть оснастки абсолютно жесткой, то для резин к - 0,5...0,7 МПа/°С. Поэтому при нагреве до температуры 300 °С и выше можно создать практически любое давление формования, необходимое для изготовления изделий из ТКМ.
Метод термокомпрессионного прессования можно осуществить с использованием двух основных типов технологической оснастки: с постоянным (рис. 2.27, а) и переменным (рис. 2.27, б) объемами формования.
2.7. Формообразование прессованием в формах |
Рис. 2.27. Оснастка для термокомпрессионного формования с постоянным (а) и переменным (б) объемом:
/ - металлический пуансон; 2 - металлическая матрица; 3 - эластичный формующий элемент; 4 - уплотняемый пакет; 5 - опорные планки; 6 - фиксирующие элементы; 7 - датчик давления; 8 - направляющие колонки-фиксаторы; 9 - упругие тарированные элементы
В первом случае объем оформляющей полости в течение всего цикла формования остается постоянным. Регулируя зазор между ЭФЭ и пакетом ТКМ, можно в широких пределах изменять температуру начала воздействия и конечного уровня давления формования.
В оснастке с переменным объемом один из элементов ограничительной части выполнен подвижным, но подкреплен упругими тарированными элементами. При повышении давления, заданного упругими тарированными элементами, происходит некоторое перемещение пуансона по колонкам, при этом давление формования сохраняется на заданном уровне.
В оснастке с ЭФЭ можно одновременно формовать и собирать изделия интегральной конструкции, например панели различной конфигурации с внутренним силовым набором. Вследствие эластичности материала ЭФЭ и высоких значений КЛТР извлечение ЭФЭ из различных поднутрений осуществляется без особых затруднений. Одновременно обеспечивается качественное уплотнение всех поверхностей, включая поверхности с малым радиусом перехода.
2. ТЕХНОЛОГИЯ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ
Повышение температуры переработки конструкционных ТКМ сужает круг выбора материалов ЭФЭ. Особенность эксплуатации заключается в том, что ЭФЭ находятся в условиях всестороннего сжатия в замкнутом объеме при повышенных температурах. Таким образом, материалы ЭФЭ для переработки ТКМ должны обладать следующими свойствами:
высокой эластичностью, необходимой для передачи давления равномерно по всем направлениям;
стабильностью свойств при длительном нахождении в условиях замкнутого объема при температурах эксплутации;
значениями КЛТР не ниже 250 Ю -6 °С -1 , постоянными в процессе эксплуатации.
Установлено, что из серийно выпускаемых отечественной промышленностью эластомеров только резины на основе си-локсановых каучуков обладают свойствами, удовлетворяющими предъявляемым требованиям. Составы на их основе обеспечивают различные значения КЛТР, обладают хорошей теплопроводностью, высокой стабильностью размеров при многократном использовании. При температурах до 200 °С материалом ЭФЭ может быть резина на основе силиконового каучука СКТВ-1.
При использовании термокомпрессионного метода прессования можно получать равнотолщинные изделия с качественно отформованными стенками. При этом трудоемкость изготовления технологической оснастки снижается, а уровень физико-механических характеристик повышается за счет более равномерного распределения давления формования.
dx.doi.org/ 10.18577/2307-6046-2016-0-6-8-8
УСТАНОВЛЕНИЕ ПРИЧИН ОБРАЗОВАНИЯ ПОРИСТОСТИ ПРИ ИЗГОТОВЛЕНИИ ПКМ
Известно, что пористость в полимерных композиционных материалах (ПКМ) оказывает значительное влияние на прочностные свойства изделий, работающих в условиях изгибающих, сжимающих и сдвиговых нагрузок. В настоящее время во ФГУП «ВИАМ» работы по созданию беспористых ПКМ, получаемых методами автоклавного и безавтоклавного формования, ведутся в соответствии со «Стратегическими направлениями развития материалов и технологий их переработки на долгосрочный период вплоть до 2030 года» (13.2. «Конструкционные ПКМ») . Цель данной работы - выявление основных источников образования пористости при изготовлении ПКМ различными методами. На плоских испытанных образцах, собранных из увлажненных препрегов и отформованных в автоклаве или под вакуумом, установлено, что основным источником образования пористости является влага, содержащаяся в связующем и в армирующих наполнителях. Приводятся данные исследования возможности получения углепластиков вакуумным формованием из препрегов, полученных по растворной технологии, с физико-механическими свойствами, равными свойствам препрегов, полученных при автоклавном формовании, в том числе и по пористости. Даны рекомендации и способы избавления от влаги при подготовке и изготовлении изделий.
Введение
Структура полимерных композиционных материалов (ПКМ) состоит из трех составляющих: армирующий наполнитель, связующее (матрица) и поры. Армирующий наполнитель воспринимает действующие на изделие нагрузки, связующее связывает воедино отдельные волокна наполнителя и перераспределяет нагрузки внутри изделия, а поры «вредят» совместной работе двух других составляющих композита, снижая сопротивление сжимающим и сдвиговым нагрузкам и тем самым уменьшая работоспособность конструкции . Изготовление изделий из ПКМ методом вакуумного формования известно давно и применяется широко ввиду простоты и дешевизны процесса - однако только при изготовлении несиловых деталей, при этом изготовители не обращали внимание на соотношение «волокно-связующее» и наличие пористости в готовых изделиях. Использование автоклава при формовании изделий из ПКМ позволило снизить содержание пор до 1-2% за счет давления в 6-7 ат (0,6-0,7 МПа), поэтому изготовители и в данном случае не особо обращали внимание на образующуюся при этом пористость, поскольку свойства изделий соответствовали заданным требованиям. Однако с переходом на безавтоклавные (без использования высокого давления) методы формования для обеспечения такой же пористости (1-2%) необходимо проведение дополнительных исследований и разработок:
Потребовалось разобраться в причинах образования пористости;
Найти решение для получения беспористых композитов.
Существует множество источников образования пор в композитах. Механизм образования пор зависит от используемой технологии. При изготовлении изделий методом автоклавного формования поры, образующиеся в процессе отверждения при формовании под высоким давлением, остаются в материале в незначительном количестве. При вакуумном формовании препрегов при существенно меньшем давлении, чем в автоклаве, получение деталей с низкой пористостью (1-2%) становится непростой задачей. Для ее решения необходимо прежде всего понять механизм образования пор. С точки зрения экономики переход от автоклавного формования к вакуумному позволяет в значительной степени уменьшить капитальные вложения, увеличить энергоэффективность, избавиться от необходимости использования дорогостоящего азота. При этом также снимаются ограничения по размеру изготавливаемых деталей .
С момента создания стеклонаполнителей (с 1946 г.), а затем угле-, боро- и органоволокон (с 1970 г.) во ФГУП «ВИАМ» ведутся работы по разработке и внедрению в авиационную и ракетную технику ПКМ на их основе. В настоящее время работы ведутся в соответствии со стратегическими направлениями развития материалов и технологий их переработки на долгосрочный период вплоть до 2030 г. .
Разные авторы трактуют причины образования пористости в композитах по-разному: одни считают, что пористость образуется от остатков захваченного при изготовлении препрегов воздуха и летучих продуктов, другие объясняют это наличием влаги, находящейся в связующих и наполнителях, а третьи предполагают, что поры образуются и от того, и от другого .
Данная статья посвящена вопросу рассмотрения причин образования пористости в ПКМ и поиску решений по получению беспористых пластиков.
Материалы и методы
Автоклавное и вакуумное формование препрегов
Для лучшего понимания причин образования пор в препрегах и контроля за образованием дефектов в деталях, изготавливаемых за рубежом из ООА-препрегов (out-of-autoclave), в работе изучали механизм образования пор в зависимости от содержания влаги в связующем. Неотвержденный ООА-препрег на основе эпоксидного связующего марки МТМ 44-1 и углеродного наполнителя марки СF 5804А фирмы Advanced Composites Group (Великобритания) предварительно увлажняли при относительной влажности 70; 80 и 90% и температуре 35°С. Выложенные из данного препрега 16-слойные плиты размером 203×292 мм с квазиизотропной структурой армирования были отформованы: один набор - под вакуумом, а другой - в автоклаве при давлении
5 ат (0,5 МПа). Изготовили также контрольные образцы, выдержанные при той же температуре, но без влагонасыщения для исключения возможности образования пор от нагрева. Один набор этих плит был также отформован в автоклаве под давлением 5 ат (0,5 МПа), а другой - только под вакуумом. Чистые пленки связующего насыщались влагой для последующего исследования на потерю массы при помощи термогравиметрического анализа (скорость отслеживания 15°С/мин). Эта потеря массы связывалась с содержанием влаги в связующем, которое измеряли при кулонометрическом анализе по методу Фишера на установке Mettler Toledo C-20 с сушильным шкафом марки DO308.
Из-за природы препрегов для вакуумного формования влагу в связующем рассматривали как главную причину образования пор. Теоретическая основа модели образования пор следует из предположения, что поры растут посредством диффузии воды из окружающего их связующего. Движущими силами данного процесса являются температура и давление, и диффузия может способствовать как росту пор, так и их растворению в зависимости от растворимости влаги в связующем и градиента концентрации. Рост пор начинается тогда, когда давление внутри поры превосходит гидростатическое давление в окружающем связующем. Поры, содержащие воздух, разрушаются под воздействием давления, но когда в них содержится вода, давление водяных паров при повышении температуры будет возрастать по экспоненте, что вызовет стабилизацию и рост пор. Основные уравнения для выбранной масс-диффузии роста пузырьков определяют диаметр пор d мм и движущую силу роста пор β:
где D - коэффициент диффузии воды в связующем, мм 2 /ч; t - продолжительность процесса, с; C bulk - концентрация воды внутри связующего, г/мм 3 ; C void - концентрация воды на поверхности пор, г/мм 3 ; P g - плотность газа, кг/м 3 .
В работе приводится расчет роста диаметра пор в зависимости от относительной влажности, который возрастает по экспоненте (рис. 1). Видно, что из-за повышенного давления при автоклавном формовании условие С void <С bulk не выполняется и поры не должны формироваться и расти.
Рис. 1. Диаметр пор для вакуумного и автоклавного формования в зависимости от относительной влажности (расчетные значения)
Для того чтобы сравнить данные, полученные с помощью предсказанной модели, с экспериментально определенным содержанием пор, рассчитанные по модели диаметры пор пересчитали в объемное содержание пор. Используя диаметры пор, полученные с помощью модели, и измеренное содержание пор, получили объем связующего, необходимый для образования одной поры заданного диаметра. Он должен оставаться постоянным для заданного связующего:
[% (объемн.)], (3)
где V m - объем единичной матрицы, используемый для масштабирования результатов, полученных с помощью модели, мм 3 .
На рис. 2 показана зависимость измеренного содержания пор от относительной влажности вместе с рассчитанными значениями по диффузионной модели.
Рис. 2. Расчетное и экспериментальное значения объемного содержания пор
Для проверки влажностной модели результаты термогравиметрического анализа сравнивали с содержанием влаги в связующем, измеренным титрованием по методу Фишера. Значения массового содержания влаги в связующем эквивалентны значениям полной потери массы при проведении термогравиметрического анализа. Это подтвердило предположение о том, что в данном случае летучие вещества не оказывают существенного влияния на рост пор, влияет только влага в связующем. Таким образом, любые летучие вещества содержатся в связующем в пренебрежимо малом количестве, и их вкладом в образование пор можно пренебречь. К тому же вакуумные каналы эффективно удаляют воздух из исследованного препрега, и отсутствуют признаки того, что обнаруженные поры можно приписать «запертому» воздуху и летучим веществам. Исключаем эти два потенциальных источника пор, единственным источником оставляем растворенную влагу, что оправдывает использование рассмотренной модели для прогнозирования образования пор.
Хотя количество влаги в препреге кажется относительно малым, когда выражается в массовом содержании, ее мольная доля гораздо выше, а водяной пар потенциально может занимать большой объем. Это указывает на то, что растворенная влага может быть источником образования пор , так как 1 л воды под вакуумом превращается в 1000 л пара. Поэтому, чтобы получить беспористые изделия вакуумным формованием препрегов, необходимо тщательно контролировать влажность помещения в процессе выкладки слоев для предотвращения набирания влаги связующим. В работе показана чувствительность вакуумного метода к содержанию влаги. Относительная влажность 45% соответствует массовому содержанию влаги в связующем ~0,25%. Обычно поставляемое связующее содержит (0,24±0,03)% влаги, что несколько выше, чем количество влаги, которое можно контролировать при формовании при атмосферном давлении.
Если связующее находится в распакованном виде в течение 24 ч в помещении при относительной влажности (50±5)%, то содержание влаги в нем вырастает до (0,30±0,01)%. Производство крупногабаритных деталей часто требует нескольких дней для нарезки и выкладки препрега. Следовательно, для получения качественных деталей безавтоклавным методом необходим контроль за влажностью внутри рабочего помещения. Сборку необходимо проводить в помещении, в котором задается и поддерживается не только температура, но и относительная влажность воздуха.
Авторами проведена работа по исследованию возможности использования вакуумного формования препрегов, полученных по растворной технологии, с целью изготовления ПКМ с содержанием связующего, аналогичным содержанию, получаемому при автоклавном формовании и получения при этом минимальной пористости. Для этого использовали препреги на основе равнопрочной ткани фирмы Porcher (арт. 3692) с поверхностной плотностью 200 г/м 2 , пропитанной растворным эпоксидным связующим ЭДТ-69Н(М) на установке УПСТ-1000М, с содержанием связующего 39-40% и летучих 2±0,3%. Растворителем для связующего являлась смесь спирта с ацетоном в соотношении 2:1. Для достижения поставленной цели необходимо было получить содержание связующего в пластике аналогичное содержанию, получаемому при автоклавном формовании . Собрали по два вида плоских панелей размером 300×300 мм, из которых два образца формовали под вакуумом, а два других - в автоклаве. Каждый образец состоял из 17 слоев, причем первый образец собирали из 17 слоев препрега, а второй - из препрегов, чередующихся с сухими слоями ткани фирмы Porcher (арт. 3692). В качестве впитывающих слоев использовали стеклоткань Т-45(п)-76. Два образца формовали в автоклаве по режиму, рекомендованному разработчиками материала, а два других - под вакуумным мешком в термошкафу по режиму, отличающемуся от автоклавного режима. Для исключения вытекания связующего со стороны торцов, последние защищались слоем герметизирующей ленты.
При этом режим формования должен быть подобран таким образом, чтобы до начала желирования связующего были удалены все паровоздушные включения и летучие продукты, а также излишки связующего в препрегах. При этом для удаления летучих и газовых включений должны быть созданы соответствующие условия, такие как низкая вязкость связующего, температура и наличие перепада давления формуемого пакета, преодолеть которые могли бы выходящие газы, а также связующее. Сюда же относится и величина проницаемости препрега, заполненного вязким связующим. Процесс удаления летучих продуктов должен сопровождаться процессом заполнения связующим пустот, имеющихся и образующихся за счет удаленных летучих. Заполнение пустот связующим будет осуществляться за счет как созданного при вакуумировании давления, так и за счет капиллярных сил. При этом удаление летучих прежде всего начнется с первого верхнего слоя препрега, прилегающего к разделительной пористой воздухопроницаемой пленке. Затем из прилегающего к нему второго слоя и т. д. до последнего слоя.
При автоклавном формовании остатки летучих, не удаленные вакуумированием, будут заформованы в пластике в виде пузырьков с помощью созданного давления и будут тем меньше, чем больше давление формования. Если же формование проводить только за счет вакуумного давления, то те летучие, которые останутся в препрегах, увеличат свой объем и тем больше, чем выше разрежение и температура. Поэтому для получения материала с минимальной пористостью необходимо добиться полного удаления летучих с помощью соответствующих технологических приемов. При этом летучие, находящиеся в верхних слоях пакета препрега, удаляются первыми и достаточно легко, так как для них мало́ сопротивление небольшой толщины вязкого связующего. Летучие же, находящиеся в нижних слоях пакета, должны преодолеть значительное сопротивление, во-первых, давления, созданного вакуумом, и, во-вторых, связующего, обладающего вязкостью во много раз большей вязкости газообразных летучих.
Результаты
Согласно закона Дарси, для пористых материалов, к которым относятся армирующие материалы, скорость фильтрации v прямо пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости жидкости или газа и толщине пакета:
где K - коэффициент проницаемости структуры, Д (Дарси); η - вязкость жидкости или газа, Па·с; DР - перепад давления, МПа; Н - толщина пакета, см.
Для удаления излишков связующего и летучих продуктов из пакета препрега использовали сухую (непропитанную) ткань той же марки, которую закладывали между слоями препрега и обеспечивали дренаж летучих продуктов при вакуумировании. При создании давления и температуры сухая ткань в момент формования заполнялась связующим из близлежащих слоев препрега. Готовые панели углепластика разрезали на образцы для определения физико-механических характеристик. Из той же партии препрегов собрали аналогичные панели, отформованные в автоклаве, образцы из которых также испытали.
Из формулы (4) видно, что чем больше вязкость и толщина пакета, тем меньше скорость фильтрации, а также чем меньше проницаемость, тем меньше скорость.
Удаление летучих производится при повышенной температуре, когда вязкость связующего уменьшается, а летучие (такие как остатки ацетона и спиртов) переходят в газообразное состояние. Вязкость ацетона при температуре 75°С составляет 0,228 мПа·с, спирта: 0,471 мПа·с, а воздуха при 20°С: 0,018 мПа·с. Вязкость же связующего при температуре 80-90°С составляет 0,4-0,6 мПа·с, что естественно будет тормозить движение выходящих газовых включений.
Из вышесказанного следует, что чем больше толщина изделия и чем меньше коэффициент проницаемости, тем труднее удалить летучие из нижних слоев препрега. Одним из технологических приемов является так называемая поэтапная сборка пакета препрегов с вакуумированием при температуре после выкладки нескольких слоев, что позволяет удалить основную часть летучих до окончательного формования. Таким методом фирма «Боинг» изготовила панель стабилизатора из углеродных препрегов на связующем Сycom 5320, получив при этом пористость материала ˂1%. Однако этот способ предполагает равное содержание связующего в препреге и изделии, а этого можно достичь на установках, обеспечивающих дозированный нанос расплава связующего. При изготовлении ПКМ на основе препрегов, получаемых по растворной технологии, весовое содержание связующего в препреге, как правило, больше, чем должно быть в изделии. Поэтому для удаления излишков связующего при автоклавном формовании используют пористые впитывающие слои. При изготовлении толстостенных конструкций иногда в структуру собираемого пакета препрегов вводят сухие слои ткани, чередуя с несколькими слоями препрега в зависимости от исходного содержания связующего в препреге и требуемого содержания связующего в готовом изделии. Такие слои, являясь хорошим дренажным материалом, обеспечивают удаление летучих из близлежащих слоев препрегов и впитывают излишки связующего из них.
Из готовых пластин углепластика вырезали образцы для определения плотности методом гидростатического взвешивания, а также прочности при изгибе и сдвиге, водопоглощения кипячением и прочности после кипячения. По результатам гидростатического определения плотности и расчета теоретической плотности, исходя из толщины монослоя пластика, рассчитывали пористость полученных образцов по формуле:
где γ ис и γ т - истинная и теоретическая плотность пластика соответственно, г/см 3 .
По толщине монослоя, содержанию связующего, плотности пластика, пористости и водопоглощению (см. таблицу) показатели образцов без сухих и с сухими слоями ткани при вакуумном формовании близки между собой. Из этого следует, что формование под вакуумом возможно как из препрегов, так и в комбинации с сухими слоями. При автоклавном формовании разницы между образцами из препрегов и препрегов с сухими слоями ткани также практически не наблюдается.
Особо следует отметить, что использование впитывающих слоев и особенно сухих слоев позволило обеспечить получение ПКМ с низкой пористостью, близкой к пористости, полученной при автоклавном формовании (см. таблицу).
Свойства углепластиков на основе ткани фирмы Porcher (арт. 3692) и связующего
ЭДТ-69Н(М), изготовленных вакуумным формованием и в автоклаве
Толщина монослоя, |
Плотность пластика, г/см 3 |
Пористость |
Водо-поглощение |
Предел прочности при изгибе/сдвиге, МПа |
|||||
в препреге |
в пластике |
истинная |
расчетная |
в исходном состоянии |
после кипячения |
||||
Вакуумное формование (средние значения) |
|||||||||
Без сухих слоев |
|||||||||
С сухими слоями |
|||||||||
Автоклавное формование (средние значения) |
|||||||||
Без сухих слоев |
|||||||||
С сухими слоями |
Прочность при изгибе, содержание связующего и плотность углепластиков, изготовленных в автоклаве, близки, но следует отметить, что введение сухих слоев привело к незначительному увеличению прочности и плотности и снижению содержания связующего. Это указывает на то, что введение сухих слоев способствует более интенсивному удалению излишков связующего в сухие слои.
Изготовленные вакуумным формованием образцы показали высокую прочность при изгибе пластика с сухими слоями. Однако плотность этого пластика немного ниже, чем у таких же образцов, изготовленных автоклавным формованием. Что касается прочности при изгибе, плотности и содержания связующего образцов, состоящих из одних препрегов, то можно предположить, что наличие впитывающих слоев, обладающих высокой проницаемостью и впитыванием, привело к удалению излишков связующего в эти слои больше чем требуется, а образованные пустоты в пластике не были заполнены связующим, что подтверждается большей пористостью в них. Поэтому при изготовлении изделий методом вакуумного формования необходимо строго подбирать количество впитывающих слоев, в которые впитывается часть излишков, а остальная часть пойдет на заполнение пустот, образованных при удалении паровоздушных и летучих продуктов. Но в этом случае лучше использовать введение сухих слоев, строго рассчитав их количество.
Инфузионное формование сухих преформ
Переход на безавтоклавные методы формования посредством пропитки пакета сухого армирующего наполнителя, находящегося в герметично закрытой форме, жидкими связующими под давлением потребовал, также как и формование препрегов под вакуумом, проведения исследований механизма образования пор в получаемых пластиках. При автоклавном или вакуумном формовании препрегов зарождение и рост пор происходит во время цикла отверждения, а в методах жидкого формования основным источником пористости считается «запертый» воздух . Микроструктура текстильных форм содержит два вида пор с сильно отличающимися размерами: микропоры (внутри пучков волокон) между отдельными волокнами наполнителя и макропоры, представляющие собой пустое пространство между отдельными нитями.
Гетерогенность структуры обуславливает неравномерность течения связующего при пропитке: по крупным порам связующее движется в соответствии с законом Дарси под действием градиента давления, а по мелким порам (капиллярам) - под действием капиллярных сил. Неравномерность скорости движения связующего по двум разным каналам приводит к образованию двойного течения и двух видов пор в структуре полученных пластиков. Быстрое течение связующего по крупным порам приводит к образованию пористости внутри пучков волокон, где скорость движения за счет капиллярного давления отстает от скорости движения внутри крупных пор. Если скорость движения связующего мала, то пузырек воздуха «запирается» в макропорах, откуда связующее после их заполнения отводится за счет капиллярных сил в микропоры внутри волокон .
В работах экспериментально установлено, что формирование пор во фронте течения коррелирует с безразмерной величиной, называемой капиллярным числом (С а), которое является отношением вязкости связующего к его поверхностному натяжению:
где μ - вязкость связующего; u - скорость течения связующего; γ - поверхностное натяжение связующего; Q - угол смачивания; m - пористость армирующего наполнителя.
В работе исследовали влияние скорости подачи связующего на порообразование, связывая их с получаемым капиллярным числом. Исследованы три вида армирующих наполнителей на основе стеклянного волокна: маты из рубленных волокон, двунаправленная и однонаправленная ткани. Работу проводили на образцах размером 350×250×3 мм при инжекции эпоксидного связующего с поверхностным натяжением, равным 35 мН/м и вязкостью 0,1 Па·с. Скорость инжекции варьировали в пределах от 6 до 18 мл/с. Обнаружили, что при низких скоростях подачи связующего капиллярные силы становятся доминирующими, затягивая поток жидкости через пучки волокон ткани, в которых, если и образуется, то минимальное количество пустот. При этом макропустоты образуются в местах переплетения пучков волокон ткани основы с утком. При больших скоростях потока связующее проходит в основном через пересечения основы с утком, образуя большое количество микропустот в межволоконных зазорах.
На образование пор в полимерных материалах, изготавливаемых инфузионными методами или пропиткой под давлением, влияет не только воздух, оставшийся в наполнителе, но и влага, содержащаяся в них и в связующих, о чем упоминалось ранее, при вакуумном формовании из препрегов. Ткани, используемые для изготовления изделий по технологии жидкого формования, если они находятся в обычных цеховых условиях, всегда содержат так называемую капиллярную влагу в зонах переплетения моноволокон в жгутах, где радиус поры ˂10 -5 см. Удалить капиллярную влагу, удерживаемую тканью, тем труднее, чем меньше радиус капилляра. На удаление ее требуется дополнительный расход энергии, поэтому необходимо от нее избавиться до процесса пропитки с помощью сушки при повышенной температуре . Воздух, находящийся в тканях, удаляется вакуумом, а для удаления капиллярной влаги требуется нагрев до 70°С для превращения ее в пар под вакуумом. Поэтому перед проведением процесса пропитки ткань должна быть просушена до сборки пакета, а затем подвергнута вакуумированию под герметизирующей пленкой. Дегазировать связующее для удаления влаги и летучих веществ необходимо до начала пропитки.
На метод вакуумной инфузии имеется большое количество патентов, направленных на повышение качества получаемых изделий . Известен способ изготовления изделий по технологии вакуумной инфузии, разработанной фирмой EADS, согласно которому рабочая полость, куда помещена преформа, сообщается с емкостью для связующего и вакуумным насосом. Рабочая полость образована полупроницаемой мембраной, прикрепленной к оснастке с помощью герметичных уплотнителей. Поверх мембраны расположена газонепроницаемая пленка, также прикрепленная к оснастке при помощи герметизирующих уплотнителей, в результате чего между мембраной и герметичной пленкой образуется герметично отделенная от внешнего пространства вторая полость, также как и первая (рабочая) полость, связанная с вакуумным насосом. При этом за счет полупроницаемой мембраны создается воздушное сообщение между первой и второй полостями. Во второй полости между мембраной и газонепроницаемой пленкой находится вентиляционная ткань, предназначенная для направленного перемещения воздуха и других летучих компонентов, проходящих из рабочей полости через мембрану во вторую полость к вакуумному насосу.
Обсуждение и заключения
На основании многочисленных использованных научных литературных источников установлены причины образования пористости при формовании изделий из ПКМ как автоклавным, так и безавтоклавным методами. Основным источником образования пористости является влага, содержащаяся в связующих и армирующих наполнителях, превращающаяся в пар при нагреве. Образующиеся поры при автоклавном формовании за счет избыточного давления уменьшаются в размере и, как правило, пористость не превышает 2-3% (объемн.). При вакуумном формовании препрегов для получения беспористых пластиков требуется тщательный контроль влажности помещений хранения и сборки пакетов сухих армирующих наполнителей и препрегов, а также использование препрегов с односторонним нанесением связующего. При инфузионных методах формования на пористость пластиков также влияет влага и летучие вещества в связующих, которые в обязательном порядке должны быть тщательно дегазированы до пропитки, а также влага, содержащаяся в наполнителях. Поэтому перед сборкой пакета наполнители должны быть просушены, а сборка пакета должна проводиться в помещениях с влажностью не более 45-50%, в процессе пропитки должен использоваться более глубокий вакуум для отведения газообразных продуктов, оставшихся в собранных преформах, с использованием полупроницаемых мембран. Кроме того, для получения беспористых пластиков необходимо обеспечить равномерность течения связующего как по крупным каналам между нитями, так и по зазорам-капиллярам между волокнами нитей для исключения образования так называемого «двойного течения».
ЛИТЕРАТУРА REFERENCE LIST
1. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3–33
2. Михайлин Ю.А. Конструкционные полимерные композиционные материалы. СПб.: Научные основы и технологи. 2008. 822 с.
3. Браутман Л. Разрушение и усталость. М.: Мир, 1978. 153 с.
9. Каблов Е.Н., Кондрашов С.В., Юрков Г.Ю. Перспективы использования углеродсодержащих наночастиц в связующих для полимерных композиционных материалов // Российские нанотехнологии. 2013. Т. 8. №3–4. С. 24–42.
10. Донецкий К.И., Коган Д.И., Хрульков А.В. Свойства полимерных композиционных материалов, изготовленных на основе плетеных преформ // Труды ВИАМ: электрон. науч.-технич. журн. 2014. №3. Ст. 05. URL: http://www..01.2016). DOI: 10.18577/2307-6046-2014-0-3-2-2.
11. Донецкий К.И., Хрульков А.В., Коган Д.И., Белинис П.Г., Лукьяненко Ю.В. Применение объемно-армирующих преформ при изготовлении изделий из ПКМ // Авиационные материалы и технологии. 2013. №1. С. 35–39.
12. Каблов Е.Н. Материалы и химические технологии для авиационной техники // Вестник Российской академии наук. 2012. Т. 82. №6. С. 520–530.
13. Каблов Е.Н., Гращенков Д.В., Ерасов В.С., Анчевский И.Э., Ильин В.В., Вальтер Р.С. Стенд для испытания на климатической станции ГЦКИ крупногабаритных конструкций из ПКМ // Сб. докл. IX Междунар. науч. конф. по гидроавиации «Гидроавиасалон-2012». 2012. С. 122–123.
14. Хрульков А.В., Душин М.И., Попов Ю.О., Коган Д.И. Исследования и разработка автоклавных и безавтоклавных технологий формования ПКМ // Авиационные материалы и технологии. 2012. №S. С. 292–301.
15. Душин М.И., Хрульков А.В., Мухаметов Р.Р. Выбор технологических параметров автоклавного формования деталей из полимерных композиционных материалов // Авиационные материалы и технологии. 2011. №3. С. 20–26.
27. Душин М.И., Хрульков А.В., Платонов А.А., Ахмадиева К.Р. Безавтоклавное формование углепластиков на основе препрегов, полученных по растворной технологии // Авиационные материалы и технологии. 2012. №2. С. 43–48.
38. Лыков А.В. Теория сушки. М.: Энергия, 1968. 472 с.
42. Способ изготовления волокнистых композитов вакуумной инфузией и устройство для осуществления способа: пат. 2480335 PU; опубл. 27.04.13.
1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy . SPb.: Nauchnye osnovy i tehnologi. 2008. 822 s.
3. Brautman L. Razrushenie i ustalost . M.: Mir, 1978. 153 s.
4. Void Content of Reinforced Plastic: ASTM D 2734-09. Standard by ASTM International. 2009. 3 p.
5. Tavares S.S., Michaud V., Manson J.A.E. Through thickness air permeability of prepregs during cure // Composites: Part A. 2009. V. 40. P. 1587–1596.
6. Thomas S., Nutt S.R. In situ estimation of though-thickness resin flow using ultrasound // Compos. Sci. Technol. 2008. 68:3093-8.
7. Tavares S.S., Michaud V., Manson J.A.E. Assessment of semi-impregnated fabrics in honeycomb sandwich structures // Composites: Part A. 2010. V. 41. P. 8–15.
8. Jackson K., Crabtree M. Autoclave guality composites tooling for composite from vacuum bag only processing // 47th International SAMPLE symposium. 2002. P. 800–807.
9. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
10. Donetskij K.I., Kogan D.I., Hrulkov A.V. Svojstva polimernyh kompozicionnyh materialov, izgotovlennyh na osnove pletenyh preform // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 05. Available at: http://www.. DOI: 10.18577/2307-6046-2014-0-3-5-5.
11. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
12. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.Je., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon-2012». 2012. S. 122–123.
14. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
15. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
16. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental methods for determining the growth and collapse of gas bubbles // Compos. Manuf. 1994. V. 5 (3). P. 139–147.
17. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental evaluation of a diffusion model for the growth and collapse of gas bubbles // Compos. Manuf. 1994. V. 5 (3). P. 149–158.
18. Liu L., Zhang B., Wang D., Wu Z. Effects of cure cycle on void content and mechanical properties of composite laminates // Compos. Struct. 2006. V. 73. P. 303–309.
19. Liu L., Zhang B., Wu Z., Wang D. Effects of cure pressure induced voids on the mechanical strength of carbon/epoxy laminates // J. Mater. Sci. Technol. 2005. V. 21 (1). P. 87–91.
20. Olivier P., Cottu J.P., Ferret B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates // Composites. 1995. V. 26 (7). P. 509–515.
21. Huang H., Talreja R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites // Composites Science and Technology. 2005. V. 65. P. 1964–1981.
22. Costa M.L., Almeida S.F.M., Rezende M.C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates // Composites Science and Technology. 2001. V. 61. P. 2101–2108.
23. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture // Composites Science and Technology. 2010. V. 70. Р. 2304–2309.
24. Kardos J.L., Dudukovic M.P., Dave R. Void growth and resin transport during processing of thermosetting-matrix composites // Adv. Polym. Sci. 1986. V. 80. P. 102–123.
25. Boey F.Y.C., Lye S.W. Void reduction in autoclave processing of thermoset composites part 1: high pressure effects on void reduction // Composites. 1992. V. 23 (4). P. 261–265.
26. Hayward J.S., Harris B. Effect of process variables on the quality of RTM mouldings // SAMPE J. 1990. V. 26 (3). P. 39–46.
27. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
28. Lundstrom T.S., Gebart B.R., Lundemo C.Y. Void formation in RTM // The 49th annual conference. Session 16-F. Composite Institute of the Society of the Plastics Industry. 1992.
29. Patel N., Lee L.J. Effect of fiber mat architecture on void formation and removal in liquid composite molding // Polym. Compos. 1995. V. 16 (5). P. 386–399.
30. Patel N., Rohatgi V., Lee L.J. Modeling of void formation and removal in liquid composite molding. Part II. Model development // Polym. Compos. 1996. V. 17 (1). P. 104–114.
31. Chen Y.T., Davis H.T., Macosko C.W. Wetting of fiber mats for composite manufacturing: I. Visualization experiments. AlChE // J. Polym. Compos. 1995. V. 41 (10). P. 2261–2273.
32. Patel N., Rohatgi V., Lee L.J. Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat // Polym. Eng. Sci. 1995. V. 35 (10). P. 837–851.
33. Rohatgi V., Patel N., Lee L.J. Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat // Polym. Compos. 1996. V. 17 (2). P. 161–170.
34. Ruiz E., Achim V., Bread J., Chatel S., Trouchu F. A fast numerical approach to reduce voud formation in liquid composite molding // The 8th International Conference on Flow Processes in Composite Materials (FPCM8). Douai. 2006. P. 251–260.
35. Bread J., Henzel Y., Trouch F., Gauvin R. Analysis of dynamic flow through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements // Polymer Composites. 2003. V. 24. №3. P. 409–421.
36. Lee G.W., Lee K.J. Mechanism of void formation in composite processing with woven fabrics // Polymer and Polymer Composites. 2003. V. 11. №7. P. 563–570.
37. Hayward J.S., Harris B. Effect of vacuum assistance in resin transfer moulding // Compos. Manuf. 1990. V. 1 (33). P. 161–166.
38. Lykov A.V. Teoriya sushki . M.: Energiya, 1968. 472 s.
39. High-performance infusion system for VARTM fabrication: pat. 6964561 США; publ. 15.11.05.
40. Method for making composite structures: pat. 6630095 US; publ. 07.10.03.
41. Method and device for producing fibre-reinforced components using an injection method: пат. 1181149 EU; publ. 10.12.03.
42. Sposob izgotovleniya voloknistyh kompozitov vakuumnoj infuziej i ustrojstvo dlya osushhestvleniya sposoba: pat. 2480335 PU ; opubl. 27.04.13.
Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.
Автоклавное формование. Препрег или многослойный пакет из пре-прега на основе углеродных волокон выкладывают на форму, вместе с ней помещают в вакуумный мешок и снижают в нем давление. Метод, при котором отверждение проводят, создавая градиент давления по отношению к атмосферному, называют формованием с помощью вакуумного мешка. Так как нередко избыточное внешнее давление создают с помощью автоклава, то этот метод также называют автоклавным формованием. Первоначально он использовался для склеивания деталей самолетов.
Процесс собственно автоклавного формования состоит из следующих основных этапов: 1) на форму накладывают необходимое число слоев препрега; 2) при повышенных давлении и температуре в автоклаве проводят отверждение; 3) осуществляют отделку (зачистку) от-вержденных изделий. Чаще всего при отверждении в автоклаве используют и вакуумный мешок. Рассмотренный метод формования является
периодическим; на свойства изделий решающее влияние оказывают технология выкладки препрега на форму, тип и свойства вакуумного мешка и т. д.
Можно отметить следующие характерные особенности метода автоклавного формования: 1) возможность получения изделий равномерной толщины; 2) возможность формования крупногабаритных изделий; 3) высокое качество поверхности изделий; 4) при использовании вакуумного мешка получаются высококачественные изделия с низкой пористостью.
Недостаток метода автоклавного формования заключается в том, что он довольно дорог, требует затрат ручного труда и поэтому малопригоден для массового производства изделий. Тем не менее он весьма эффективен для изготовления изделий из таких высококачественных и легких материалов, как углепластики. Перспектива снижения стоимости процесса (соответственно и изделий) связана с механизацией и автоматизацией ряда операций, сокращением благодаря этому трудовых затрат и подбором лучших материалов для вакуумных мешков. Исследуется возможность применения для этого метода термостойких и долговечных мешков из силиконового каучука, которые можно использовать многократно. В частности, важно выбирать температуру и давление с учетом характеристик процесса отверждения, так как эти параметры оказывают значительное влияние на свойства формуемого изделия.
Надо отметить пожароопасность использования вакуумных мешков в методе автоклавного формования. Некоторые примеры возгорания и взрывов при использовании этого метода приведены в работе. Поэтому необходимо применять инертную газовую среду (например, азот) и принимать другие меры безопасности при автоклавном формовании.
Отверждение заготовок происходит в печи или непосредственно в автоклаве. Температура и продолжительность процесса отверждеиия определяются типом связующего и геометрией детали.
Охлаждение детали происходит под давлением совместно со всей оснасткой. После охлаждения деталь извлекается из формы и при необходимости проходит дальнейшую обработку.
Пултрузия. В последние годы широкое применение находят профили, прутки, трубы и другие конструктивные элементы, изготовляемые из волокнистых композитов на полимерной матрице путем непрерывного протягивания армирующего материала, пропитанного связующим отверждаемого в профилирующей форме специальной установки. Такои процесс называют пул трузией (по аналогии с зкструзией, при которой материал выходит через фильеру под действием давления). При пултрузин он протягивается под действием внешнего усилия. Схема установки для получения конструктивных элементов пултрузией показана на рис1.13.
Рис. 1.13. Схема упаковки для изготовлении элементов пултрузией:
а - схема процеса пултрузии. б - вид продукции(сечение профилей).
1 - армирующий материал. 2 - ванночка со связующим. 3 - напровляюшие ролики. 4 - матрица. 5 - обогреваемоя пресс форма. 6 - печь для термообработки. 7 - тянущее устройство. 8 - устройство для резки профиля. 9 - накопитель для заготовок.
Армирующий материал (жгуты, холсты или тканые ленты) последовательно проходит через ванну с жидким связующим 2, пропитывается, сжимается и идет далее в матрицу предварительного формования 4, а затем в обогреваемую пресс-форму 5, где фиксируется требуемая конфигурация и отверждается полимерное связующее. В матрице предварительного формования плоская по форме лента пропитанного материала постепенно преобразуется по сечению к форме получаемого конструктивного элемента. Окончательно сечение формируется в профилирующей матрице 5, где в результате нагрева происходит частичное отверждение. Для завершения отверждения, элемент после формования дополнительно гермообрабатывают в печи 6.
Материал протягивается по всему тракту формообразования с помощью какого-либо тянущего устройства, например фрикционной роликовой передачи, гусеничного механизма и т. п. Полученный профиль, труба или пруток разрезается на части определенной длины к далее может использоваться при сборке конструкций.