Содержание атф. Молекула АТФ — что это и какова её роль в организме. Как образуется АТФ в организме
Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.
Одноклассники
Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины - Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.
Строение АТФ
Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина - производного аденина и рибозы . Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1′-углеродом рибозы при помощи β-N-гликозидной связи. К 5′-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.
Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ - это особое соединение, содержащее связи, при которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.
Вот как записываются эти химические реакции :
- 1). АТФ + вода→АДФ + фосфорная кислота + энергия;
- 2). АДФ + вода→АМФ + фосфорная кислота + энергия.
Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.
Роль АТФ в живом организме. Её функции
Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.
Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ , таких, как:
Как образуется АТФ в организме?
Синтез аденозинтрифосфорной кислоты идёт постоянно , т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества - примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.
В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.
Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата) . Эта химическая реакция выглядит следующим образом:
АДФ + фосфорная кислота + энергия→АТФ + вода.
Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:
Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.
Вывод
Аденозинтрифосфорная кислота - это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!
Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.
АТФ - это сокращённое название Аденозин Три-Фосфорной кислоты. А также можно встретить название Аденозинтрифосфат. Это нуклеоид, который играет огромную роль в обмене энергией в организме. Аденозин Три-Фосфорная кислота - это универсальный источник энергии, участвующий во всех биохимических процессах организма. Открыта эта молекула была в 1929 году учёным Карлом Ломанном. А значимость ее была подтверждена Фрицем Липманом в 1941 году.
Структура и формула АТФ
Если говорить об АТФ более подробно , то это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе она же даёт энергию для движения. При расщеплении молекулы АТФ происходит сокращение мышечного волокна, вследствие чего выделяется энергия, позволяющая произойти сокращению. Синтезируется Аденозинтрифосфат из инозина - в живом организме.
Для того чтобы дать организму энергию Аденозинтрифосфату необходимо пройти несколько этапов. Вначале отделяется один из фосфатов - с помощью специального коэнзима. Каждый из фосфатов даёт десять калорий. В процессе вырабатывается энергия и получается АДФ (аденозин дифосфат).
Если организму для действия нужно больше энергии , то отделяется ещё один фосфат. Тогда формируется АМФ (аденозин монофосфат). Главный источник для выработки Аденозинтрифосфата - это глюкоза, в клетке она расщепляется на пируват и цитозол. Аденозинтрифосфат насыщает энергией длинные волокна, которые содержат протеин - миозин. Именно он формирует мышечные клетки.
В моменты, когда организм отдыхает, цепочка идёт в обратную сторону, т. е. формируется Аденозин Три-Фосфорная кислота. Опять же в этих целях используется глюкоза. Созданные молекулы Аденозинтрифосфата будут вновь использоваться, как только это станет необходимо. Когда энергия не нужна, она сохраняется в организме и высвобождается как только это потребуется.
Молекула АТФ состоит из нескольких, а точнее, трёх компонентов:
- Рибоза - это пятиуглеродный сахар, такой же лежит в основе ДНК.
- Аденин - это объединённые атомы азота и углерода.
- Трифосфат.
В самом центре молекулы Аденозинтрифосфата находится молекула рибозы, а её край является основной для аденозина. С другой стороны рибозы расположена цепочка из трёх фосфатов.
Системы АТФ
При этом нужно понимать, что запасов АТФ будет достаточно только первые две или три секунды двигательной активности, после чего её уровень снижается. Но при этом работа мышц может осуществляться только с помощью АТФ. Благодаря специальным системам в организме постоянно синтезируются новые молекулы АТФ. Включение новых молекул происходит в зависимости от длительности нагрузки.
Молекулы АТФ синтезируют три основные биохимические системы:
- Фосфагенная система (креатин-фосфат).
- Система гликогена и молочной кислоты.
- Аэробное дыхание.
Рассмотрим каждую из них в отдельности.
Фосфагенная система - в случае если мышцы будут работать недолго, но крайне интенсивно (порядка 10 секунд), будет использоваться фосфагенная система. В этом случае АДФ связывается с креатин фосфатом. Благодаря этой системе происходит постоянная циркуляция небольшого количества Аденозинтрифосфата в мышечных клетках. Так как в самих мышечных клетках тоже имеется фосфат креатина, он используется, чтобы восстановить уровень АТФ после высокоинтенсивной короткой работы. Но уже секунд через десять уровень креатин фосфата начинает снижаться - такой энергии хватает на короткий забег или интенсивную силовую нагрузку в бодибилдинге.
Гликоген и молочная кислота - снабжает энергией организм медленнее, чем предыдущая. Она синтезирует АТФ, которой может хватить на полторы минуты интенсивной работы. В процессе глюкоза в мышечных клетках формируется в молочную кислоту за счёт анаэробного метаболизма .
Так как в анаэробном состоянии кислород организмом не используется, то данная система даёт энергию так же как и в аэробной системе, но время экономится. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Такая система может позволить пробежать четыреста метров спринта или более длительную интенсивную тренировку в зале. Но долгое время работать таким образом не позволит болезненность в мышцах, которая появляется из-за переизбытка молочной кислоты.
Аэробное дыхание - эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать Аденозинтрифосфат из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких противодействий, препятствующих со стороны - как препятствует молочная кислота в анаэробном процессе.
Роль АТФ в организме
Из предыдущего описания понятно, что основная роль аденозинтрифосфата в организме - это обеспечение энергией всех многочисленных биохимических процессов и реакций в организме. Большинство энергозатратных процессов у живых существ происходят благодаря АТФ.
Но помимо этой главной функции, аденозинтрифосфат выполняет и другие:
Роль АТФ в организме и жизни человека хорошо известна не только учёным, но и многим спортсменам и бодибилдерам, так как её понимание помогает сделать тренировки более эффективными и правильно рассчитывать нагрузки. Для людей, которые занимаются силовыми тренировками в зале, спринтерскими забегами и другими видами спорта, очень важно понимать, какие упражнения требуется выполнять в тот или иной момент времени. Благодаря этому можно сформировать желаемое строение тела, проработать мышечную структуру, снизить излишний вес и добиться других желаемых результатов.
В теле человека около 70 триллионов клеток. Для здорового роста каждой из них необходимы помощники - витамины. Молекулы витаминов малы, но их недостаток всегда заметен. Если тяжело адаптироваться к темноте, вам нужны витамины А и В2, появилась перхоть - не хватает B12, B6, P, долго не заживают синяки - дефицит витамина С. На этом уроке вы узнаете о том, как и где в клетке хранится и обрабатывается стратегический запас витаминов, как витамины активизируют работу организма, а также узнаете об АТФ - главном источнике энергии в клетке.
Тема: Основы цитологии
Урок: Строение и функции АТФ
Как вы помните, нуклеиновые кислоты состоят из нуклеотидов . Оказалось, что в клетке нуклеотиды могут находиться в связанном состоянии или в свободном состоянии. В свободном состоянии они выполняют ряд важных для жизнедеятельности организма функций.
К таким свободным нуклеотидам относится молекула АТФ или аденозинтрифосфорная кислота (аденозинтрифосфат). Как и все нуклеотиды, АТФ состоит из пятиуглеродного сахара - рибозы , азотистого основания - аденина , и, в отличие от нуклеотидов ДНК и РНК, трех остатков фосфорной кислоты (рис. 1).
Рис. 1. Три схематических изображения АТФ
Важнейшая функция АТФ состоит в том, что она является универсальным хранителем и переносчиком энергии в клетке.
Все биохимические реакции в клетке, которые требуют затрат энергии, в качестве ее источника используют АТФ.
При отделении одного остатка фосфорной кислоты, АТФ переходит в АДФ (аденозиндифосфат ). Если отделяется ещё один остаток фосфорной кислоты (что случается в особых случаях), АДФ переходит в АМФ (аденозинмонофосфат) (рис. 2).
Рис. 2. Гидролиза АТФ и превращение её в АДФ
При отделении второго и третьего остатков фосфорной кислоты освобождается большое количество энергии, до 40 кДж. Именно поэтому связь между этими остатками фосфорной кислоты называют макроэргической и обозначают соответственным символом.
При гидролизе обычной связи выделяется (или поглощается) небольшое количество энергии, а при гидролизе макроэргической связи выделяется намного больше энергии (40 кДж). Связь между рибозой и первым остатком фосфорной кислоты не является макроэргической, при её гидролизе выделяется всего 14 кДж энергии.
Макроэргические соединения могут образовываться и на основе других нуклеотидов, например ГТФ (гуанозинтрифосфат) используется как источник энергии в биосинтезе белка, принимает участие в реакциях передачи сигнала, является субстратом для синтеза РНК в процессе транскрипции, но именно АТФ является наиболее распространенным и универсальным источником энергии в клетке.
АТФ содержится как в цитоплазме , так и в ядре, митохондриях и хлоропластах .
Таким образом, мы вспомнили, что такое АТФ, каковы её функции, и что такое макроэргическая связь.
Витамины - биологически активные органические соединения, которые в малых количествах необходимы для подержания процессов жизнедеятельности в клетке.
Они не являются структурными компонентами живой материи, и не используются в качестве источника энергии.
Большинство витаминов не синтезируются в организме человека и животных, а поступают в него с пищей, некоторые синтезируются в небольших количествах микрофлорой кишечника и тканями (витамин D синтезируется кожей).
Потребность человека и животных в витаминах не одинакова и зависит от таких факторов как пол, возраст, физиологическое состояние и условия среды обитания. Некоторые витамины нужны не всем животным.
Например, аскорбиновая кислота, или витамин С, необходим человеку и другим приматам. Вместе с тем, он синтезируется в организме рептилий (моряки брали в плавания черепах, для борьбы с цингой - авитаминозом витамина С).
Витамины были открыты в конце XIX века благодаря работам русских ученых Н. И. Лунина и В. Пашутина, которые показали, что для полноценного питания необходимо не только наличие белков, жиров и углеводов, но и ещё каких-то других, на тот момент неизвестных, веществ.
В 1912 году польский ученый К. Функ (Рис. 3), изучая компоненты шелухи риса, предохраняющей от болезни Бери-Бери (авитаминоз витамина В), предположил, что в состав этих веществ обязательно должны входить аминные группировки. Именно он предложили назвать эти вещества витаминами, то есть аминами жизни.
В дальнейшем было установлено, что многие из этих веществ аминогрупп не содержат, но термин витамины хорошо прижился в языке науки и практики.
По мере открытия отдельных витаминов, их обозначали латинскими буквами и называли в зависимости от выполняемых функций. Например, витамин Е назвали токоферол (от др.-греч. τόκος - «деторождение», и φέρειν - «приносить»).
Сегодня витамины делят по их способности растворяться в воде или в жирах.
К водорастворимым витаминам относят витамины H , C , P , В .
К жирорастворимым витаминам относят A , D , E , K (можно запомнить, как слово: кеда ) .
Как уже было отмечено, потребность в витаминах зависит от возраста, пола, физиологического состояния организма и среды обитания. В молодом возрасте отмечена явная нужда в витаминах. Ослабленный организм тоже требует больших доз этих веществ. С возрастом способность усваивать витамины падает.
Потребность в витаминах также определяется способностью организма их утилизировать.
В 1912 году польский ученый Казимир Функ получил из шелухи риса частично очищенный витамин B1 - тиамин. Ещё 15 лет понадобилось для получения этого вещества в кристаллическом состоянии.
Кристаллический витамин B1 бесцветен, обладает горьковатым вкусом и хорошо растворим в воде. Тиамин найден как в растительных, так и микробных клетках. Особенно много его в зерновых культурах и дрожжах (рис. 4).
Рис. 4. Тиамин в виде таблеток и в продуктах питания
Термическая обработка пищевых продуктов и различные добавки разрушают тиамин. При авитаминозе наблюдаются патологии нервной, сердечно-сосудистой и пищеварительной систем. Авитаминоз приводит к нарушению водного обмена и функции кроветворения. Один из ярких примеров авитаминоза тиамина - это развитие болезни Бери-Бери (рис. 5).
Рис. 5. Человек, страдающий от авитаминоза тиамина - болезни бери-бери
Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний, сердечно-сосудистых расстройств.
В хлебопечении тиамин вместе с другим витаминами - рибофлавином и никотиновой кислотой используется для витаминизации хлебобулочных изделий.
В 1922 году Г. Эванс и А. Бишо открыли жирорастворимый витамин, названный ими токоферолом или витамином Е (дословно: «способствующий родам»).
Витамин Е в чистом виде - маслянистая жидкость. Он широко распространен в злаковых культурах, например в пшенице. Его много в растительных, животных жирах (рис. 6).
Рис. 6. Токоферол и продукты, которые его содержат
Много витамина E в моркови, в яйцах и молоке. Витамин E является антиоксидантом , то есть защищает клетки от патологического окисления, которое приводит их к старению и гибели. Он является «витамином молодости». Огромно значение витамина для половой системы, поэтому его часто называют витамином размножения.
Вследствие этого, дефицит витамина Е, в первую очередь, приводит к нарушению эмбриогенеза и работы репродуктивных органов.
Производство витамина Е основано на выделении его из зародышей пшеницы - методом спиртовой экстракции и отгонки растворителей при низких температурах.
В медицинской практике используют как природные, так и синтетические препараты - токоферолаацетат в растительном масле, заключенный в капсулу (знаменитый «рыбий жир»).
Препараты витамина Е используются как антиоксиданты при облучениях и других патологических состояниях, связанных с повышенным содержанием в организме ионизированных частиц и активных форм кислорода.
Кроме того, витамин Е назначают беременным женщинам, а также используют в комплексной терапии лечения бесплодия, при мышечной дистрофии и некоторых заболеваниях печени.
Витамин А (рис. 7) был открыт Н. Друммондом в 1916 году.
Этому открытию предшествовали наблюдения за наличием жирорастворимого фактора в пище, необходимого для полноценного развития сельскохозяйственных животных.
Витамин А недаром занимает первое место в витамином алфавите. Он участвует практически во всех процессах жизнедеятельности. Этот витамин необходим для восстановления и сохранения хорошего зрения.
Он также помогает вырабатывать иммунитет ко многим заболеваниям, в том числе и простудным.
Без витамина А невозможно здоровое состояние эпителия кожи. Если у вас «гусиная кожа», которая чаще всего появляется на локтях, бедрах, коленях, голенях, если появилась сухость кожи на руках или возникают другие подобные явления, это означает, что вам недостает витамина А.
Витамин А, как и витамин Е, необходим для нормального функционирования половых желез (гонад). При гиповитаминозе витамина А отмечено повреждение репродуктивной системы и органов дыхания.
Одним из специфических последствий недостатка витамина А является нарушение процесса зрения, в частности снижение способности глаз к темновой адаптации - куриная слепота . Авитаминоз приводит к возникновению ксерофтальмии и разрушению роговицы. Последний процесс необратим, и характеризуется полной потерей зрения. Гипервитаминоз приводит к воспалению глаз и нарушению волосяного покрова, потери аппетита и полному истощению организма.
Рис. 7. Витамин А и продукты, которые его содержат
Витамины группы А, в первую очередь, содержатся в продуктах животного происхождения: в печени, в рыбьем жире, в масле, в яйцах (рис. 8).
Рис. 8. Содержание витамина А в продуктах растительного и животного происхождения
В продуктах растительного происхождения содержатся каротиноиды, которые в организме человека под действием фермента каротиназы переходят в витамин А.
Таким образом, Вы познакомились сегодня со структурой и функциями АТФ, а также вспомнили о значении витаминов и выяснили, как некоторые из них участвуют в процессах жизнедеятельности.
При недостаточном поступлении витаминов в организм развивается первичный авитаминоз. Разные продукты содержат разное количество витаминов.
Например, морковь содержит много провитамина А (каротина), капуста содержит витамин С и т. д. Отсюда проистекает необходимость сбалансированной диеты, включающей в себя разнообразные продукты растительного и животного происхождения.
Авитаминоз при нормальных условиях питания встречается очень редко, гораздо чаще встречаются гиповитаминозы , которые связаны с недостаточным поступлением с пищей витаминов.
Гиповитаминоз может возникать не только в результате несбалансированного питания, но и как следствие различных патологий со стороны желудочно-кишечного тракта или печени, или в результате различных эндокринных или инфекционных заболеваний, которые приводят к нарушению всасывания витаминов в организме.
Некоторые витамины вырабатываются кишечной микрофлорой (микробиотой кишечника). Подавление биосинтетических процессов в результате действия антибиотиков может также привести к развитию гиповитаминоза , как следствия дисбактериоза .
Чрезмерное употребление пищевых витаминных добавок, а также лекарственных средств, содержащих витамины, приводит к возникновению патологического состояния - гипервитаминоза . Особенно это характерно для жирорастворимых витаминов, таких как A , D , E , K .
Домашнее задание
1. Какие вещества называют биологически активными?
2. Что такое АТФ? В чем особенность строения молекулы АТФ? Какие типы химической связи существуют в этой комплексной молекуле?
3. Каковы функции АТФ в клетках живых организмов?
4. Где происходит синтез АТФ? Где осуществляется гидролиз АТФ?
5. Что такое витамины? Каковы их функции в организме?
6. Чем витамины отличаются от гормонов?
7. Какие классификации витаминов вам известны?
8. Что такое авитаминоз, гиповитаминоз и гипервитаминоз? Приведите примеры этих явлений.
9. Какие заболевания могут быть следствием недостаточного или избыточного поступления витаминов в организм?
10. Обсудите с друзьями и родственниками свое меню, подсчитайте, пользуясь дополнительной информацией о содержании витаминов в разных продуктах питания, достаточно ли витаминов вы получаете.
1. Единая коллекция Цифровых Образовательных Ресурсов ().
2. Единая коллекция Цифровых Образовательных Ресурсов ().
3. Единая коллекция Цифровых Образовательных Ресурсов ().
Список литературы
1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.
2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
3. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
Кроме белков, жиров и углеводов в клетке синтезируется большое количество других органических соединений, которые условно можно разделить на промежуточные и конечные . Чаще всего получение определенного вещества связано с работой каталитического конвейера (большого числа ферментов), и связано с образование промежуточных продуктов реакции, на которые действует следующий фермент. Конечные органические соединения выполняют в клетке самостоятельные функции или служат мономерами при синтезе полимеров. К конечным веществам можно отнести аминокислоты , глюкозу , нуклеотиды , АТФ , гормоны , витамины .
Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ колеблется и в среднем составляет 0,04% (на сырую массу клетки). Наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.
АТФ представляет собой нуклеотид, состоящий из остатков азотистого основания (аденина), моносахарида (рибозы) и трех остатков фосфорной кислоты. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.
Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты - в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).
Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью в митохондриях, при гликолизе в цитоплазме, при фотосинтезе в хлоропластах. Молекула АТФ используется в клетке за 1-2 минуты, у человека за сутки образуется и разрушается АТФ в количестве равном массе его тела.
Конечными органическими молекулами, также являются витамины и гормоны . Большую роль в жизнедеятельности многоклеточных организмов играют витамины . Витаминами считают такие органические соединения, которые данный организм синтезировать не может (или синтезирует в недостаточном количестве) и должен получать их вместе с пищей. Витамины, соединяясь с белками, образуют сложные ферменты. При недостатке в пище какого-либо витамина, не может образоваться фермент и развивается тот или иной авитаминоз. Например, недостаток витамина С приводит к цинге, недостаток витамин В 12 - к анемии, нарушению нормального образования эритроцитов.
Гормоны являются регуляторами , влияющими на работу отдельных органов и всего организма в целом. Они могут иметь белковую природу (гормоны гипофиза, поджелудочной железы), могут относиться к липидам (половые гормоны), могут быть производными аминокислот (тироксин). Гормоны образуются как животными, так и растениями.
Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).
Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)
Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.
АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.
Схема Синтез АТФ в мвтохондрии клетки
ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ
I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры->
глицерин и жирные кислоты
Крахмал ->глюкоза
II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):
У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.
III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:
1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+
2. Протон водорода H+
(катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.
3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-
4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.
5. Через протонный канал протоны водородаH+
устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+
взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)
Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:
(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)
В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.